Archives of Virology

, Volume 163, Issue 7, pp 1907–1914 | Cite as

Human-APOBEC3G-dependent restriction of porcine endogenous retrovirus replication is mediated by cytidine deamination and inhibition of DNA strand transfer during reverse transcription

  • Sae Young Jin
  • Hyung Yell Choi
  • Han Sol Kim
  • Yong-Tae JungEmail author
Original Article


Although human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, hA3G)-mediated deamination is the major mechanism used to restrict the infectivity of a broad range of retroviruses, it is unclear whether porcine endogenous retrovirus (PERV) is affected by hA3G or porcine A3F (poA3F). To determine whether DNA deamination is required for hA3G- and poA3F-dependent inhibition of PERV transmission, we developed VSV-pseudotype PERV-B expressing hA3G, mutant hA3G-E67Q (encapsidation and RNA binding activity-deficient), mutant hA3G-E259Q (deaminase-deficient), or poA3F. hA3G-E67Q decreased virus infectivity by ~ 93% compared to the ~ 99% decrease of viral infectivity by wild-type hA3G, while hA3G-E259Q decreased the infectivity of PERV-B by ~ 35%. These data suggest that cytidine deamination activity is crucial for efficient restriction of PERV by hA3G, but cytidine deamination cannot fully explain the inactivation of PERV by hA3G. Furthermore, differential DNA denaturation PCR (3D-PCR) products from 293T cells infected with PERV-B expressing hA3G mutants were sequenced. G-to-A hypermutation was detected at a frequency of 4.1% for hA3G, 3.4% for hA3G-E67Q, and 4.7% for poA3F. These results also suggest that hA3G and poA3F inhibit PERV by a deamination-dependent mechanism. To examine the effect of hA3G on the production of PERV DNA, genomic DNA was extracted from 293T cells 12 h after infection with PERV expressing hA3G, and this DNA was used as template for real-time PCR. A 50% decrease in minus strand strong stop (-sss) DNA synthesis/transfer was observed in the presence of hA3G. Based on these results, we conclude that hA3G may restrict PERV by both deamination-dependent mechanisms and inhibition of DNA strand transfer during PERV reverse transcription.



This work was supported in part by DANKOOK ChemBio Specialization for Creative Korea-II.


This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1D1A1B03032753).

Compliance with ethical standards

Conflict of interest

The author of this study has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Magre S, Takeuchi Y, Bartosch B (2003) Xenotransplantation and pig endogenous retroviruses. Rev Med Virol 13:311–329CrossRefPubMedGoogle Scholar
  2. 2.
    Patience C, Takeuchi Y, Weiss RA (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3:282–286CrossRefPubMedGoogle Scholar
  3. 3.
    Zheng YH, Jeang KT, Tokunaga K (2012) Host restriction factors in retroviral infection: promises in virus-host interaction. Retrovirology 9:112CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Goila-Gaur R, Strebel K (2008) HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 5:51CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kao S, Khan MA, Miyagi E, Plishka R, Buckler-White A, Strebel K (2003) The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. J Virol 77:11398–11407CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mbisa JL, Bu W, Pathak VK (2010) APOBEC3F and APOBEC3G inhibit HIV-1 DNA integration by different mechanisms. J Virol 84:5250–5259CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zennou V, Bieniasz PD (2006) Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates. Virology 349:31–40CrossRefPubMedGoogle Scholar
  8. 8.
    Bogerd HP, Zhang F, Bieniasz PD, Cullen BR (2011) Human APOBEC3 proteins can inhibit xenotropic murine leukemia virus-related virus infectivity. Virology 410:234–239CrossRefPubMedGoogle Scholar
  9. 9.
    Browne EP, Littman DR (2008) Species-specific restriction of apobec3-mediated hypermutation. J Virol 82:1305–1313CrossRefPubMedGoogle Scholar
  10. 10.
    Dörrschuck E, Münk C, Tönjes RR (2008) APOBEC3 proteins and porcine endogenous retroviruses. Transplant Proc 40:959–961CrossRefPubMedGoogle Scholar
  11. 11.
    Harris RS, Liddament MT (2004) Retroviral restriction by APOBEC proteins. Nature 4:868–877Google Scholar
  12. 12.
    Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS (2005) Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol 22:367–377CrossRefPubMedGoogle Scholar
  13. 13.
    Li X, Ma J, Zhang Q, Zhou J, Yin X, Zhai C, You X, Yu L, Guo F, Zhao L, Li Z, Zeng Y, Cen S (2011) Functional analysis of the two cytidine deaminase domains in APOBEC3G. Virology 414:130–136CrossRefPubMedGoogle Scholar
  14. 14.
    Iwatani Y, Takeuchi H, Strebel K, Levin JG (2006) Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J Virol 80:5992–6002CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Okada A, Iwatani Y (2016) APOBEC3G-Mediated G-to-A hypermutation of the HIV-1 Genome: the missing link in antiviral molecular mechanisms. Front Microbiol 7:2027CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Navarro F, Bollman B, Chen H, König R, Yu Q, Chiles K, Landau NR (2005) Complementary function of the two catalytic domains of APOBEC3G. Virology 333:374–386CrossRefPubMedGoogle Scholar
  17. 17.
    Miyagi E, Opi S, Takeuchi H, Khan M, Goila-Gaur R, Kao S, Strebel K (2007) Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol 81:13346–13353CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sadler HA, Stenglein MD, Harris RS, Mansky LM (2010) APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis. J Virol 84:7396–7404CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xu H, Chertova E, Chen J, Ott DE, Roser JD, Hu WS, Pathak VK (2007) Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions. Virology 360:247–256CrossRefPubMedGoogle Scholar
  20. 20.
    Iwatani Y, Chan DS, Wang F, Maynard KS, Sugiura W, Gronenborn AM, Rouzina I, Williams MC, Musier-Forsyth K, Levin JG (2007) Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 35:7096–7108CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li XY, Guo F, Zhang L, Kleiman L, Cen S (2007) APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J Biol Chem 282:32065–32074CrossRefPubMedGoogle Scholar
  22. 22.
    Mbisa JL, Barr R, Thomas JA, Vandegraaff N, Dorweiler IJ, Svarovskaia ES, Brown WL, Mansky LM, Gorelick RJ, Harris RS, Engelman A, Pathak VK (2007) Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol 81:7099–7110CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Aguiar RS, Peterlin BM (2008) APOBEC3 proteins and reverse transcription. Virus Res 134:74–85CrossRefPubMedGoogle Scholar
  24. 24.
    Holmes RK, Malim MH, Bishop KN (2007) APOBEC-mediated viral restriction: not simply editing? Trends Biochem Sci 32:118–128CrossRefPubMedGoogle Scholar
  25. 25.
    Miyagi E, Brown CR, Opi S, Khan M, Goila-Gaur R, Kao S, Walker RC Jr, Hirsch V, Strebel K (2010) Stably expressed APOBEC3F has negligible antiviral activity. J Virol 84:11067–11075CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jónsson SR, LaRue RS, Stenglein MD, Fahrenkrug SC, Andrésdóttir V, Harris RS (2007) The restriction of zoonotic PERV transmission by human APOBEC3G. PLoS One 12:e893CrossRefGoogle Scholar
  27. 27.
    Dörrschuck E, Fischer N, Bravo IG, Hanschmann KM, Kuiper H, Spötter A, Möller R, Cichutek K, Münk C, Tönjes RR (2011) Restriction of porcine endogenous retrovirus by porcine APOBEC3 cytidine deaminases. J Virol 85:3842–3857CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Suspène R, Aynaud MM, Guétard D, Henry M, Eckhoff G, Marchio A, Pineau P, Dejean A, Vartanian JP, Wain-Hobson S (2011) Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism. Proc Natl Acad Sci USA 108:4858–4863CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Suspène R, Henry M, Guillot S, Wain-Hobson S, Vartanian JP (2005) Recovery of APOBEC3-edited human immunodeficiency virus G->A hypermutants by differential DNA denaturation PCR. J Gen Virol 86:125–129CrossRefPubMedGoogle Scholar
  30. 30.
    Bae EH, Jung YT (2014) Comparison of the effects of retroviral restriction factors involved in resistance to porcine endogenous retrovirus. J Microbiol Biotechnol 24:577–583CrossRefPubMedGoogle Scholar
  31. 31.
    Vartanian JP, Henry M, Marchio A, Suspène R, Aynaud MM, Guétard D, Cervantes-Gonzalez M, Battiston C, Mazzaferro V, Pineau P, Dejean A, Wain-Hobson S (2010) Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis. PLoS Pathog 6(5):e1000928CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bélanger K, Savoie M, Rosales Gerpe MC, Couture JF, Langlois MA (2013) Binding of RNA by APOBEC3G controls deamination-independent restriction of retroviruses. Nucleic Acids Res 41:7438–7452CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jónsson SR, Haché G, Stenglein MD, Fahrenkrug SC, Andrésdóttir V, Harris RS (2006) Evolutionarily conserved and non-conserved retrovirus restriction activities of artiodactyl APOBEC3F proteins. Nucleic Acids Res 34:5683–5694CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kobayashi T, Koizumi Y, Takeuchi JS, Misawa N, Kimura Y, Morita S, Aihara K, Koyanagi Y, Iwami S, Sato K (2014) Quantification of deaminase activity-dependent and -independent restriction of HIV-1 replication mediated by APOBEC3F and APOBEC3G through experimental-mathematical investigation. J Virol 88:5881–5887CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Sae Young Jin
    • 1
  • Hyung Yell Choi
    • 1
  • Han Sol Kim
    • 1
  • Yong-Tae Jung
    • 1
    Email author
  1. 1.Department of MicrobiologyDankook UniversityCheonanKorea

Personalised recommendations