Advertisement

Characterization of the lytic archaeal virus Drs3 infecting Methanobacterium formicicum

  • Sandro Wolf
  • Martin A. Fischer
  • Anne Kupczok
  • Jochen Reetz
  • Tobias Kern
  • Ruth A. Schmitz
  • Michael Rother
Original Article

Abstract

Viruses are ubiquitous in the biosphere and greatly affect the hosts they infect. It is generally accepted that members of every microbial taxon are susceptible to at least one virus, and a plethora of bacterial viruses are known. In contrast, knowledge of the archaeal virosphere is still limited. Here, a novel lytic archaeal virus is described, designated “Drs3”, as well as its host, Methanobacterium formicicum strain Khl10. This hydrogenotrophic methanogenic archaeon and its virus were isolated from the anaerobic digester of an experimental biogas plant in Germany. The tailed virus has an icosahedral head with a diameter of approximately 60 nm and a long non-contractile tail of approximately 230 nm. These structural observations suggest that the new isolate belongs to the family Siphoviridae, but it could not be assigned to an existing genus. Lysis of the host Khl10 was observed 40-44 h after infection. Lysis of the type strain Methanobacterium formicicum DSMZ 1535 was not observed in the presence of Drs3, pointing towards resistance in the type strain or a rather narrow host range of this newly isolated archaeal virus. The complete 37-kb linear dsDNA genome of Drs3 contains 39 open reading frames, only 12 of which show similarity to genes with predicted functions.

Notes

Acknowledgements

The authors thank Marina Totrova (Institut für Mikrobiologie, Technische Universität Dresden) and Maria Margarida Vargas (Bundesinstitut für Risikobewertung, Berlin, Gemany) for technical assistance. NGS work was performed by the Deep Sequencing Group at the Dresden Concept Genome Center of the Technische Universität Dresden.

Funding

This study was supported by the Bundesministerium für Bildung und Forschung (BMBF, via BioPara project 03SF0421C and 03SF0421B).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477.  https://doi.org/10.1089/cmb.2012.0021 CrossRefGoogle Scholar
  2. 2.
    Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P (2007) CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform 8:209.  https://doi.org/10.1186/1471-2105-8-209 CrossRefGoogle Scholar
  3. 3.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefGoogle Scholar
  4. 4.
    Breitbart M (2012) Marine viruses: truth or dare. Ann Rev Mar Sci 4:425–448.  https://doi.org/10.1146/annurev-marine-120709-142805 CrossRefGoogle Scholar
  5. 5.
    Brister JR, Ako-Adjei D, Bao Y, Blinkova O (2015) NCBI viral genomes resource. Nucleic Acids Res 43:D571–D577.  https://doi.org/10.1093/nar/gku1207 CrossRefGoogle Scholar
  6. 6.
    Bryant MP, Boone DR (1987) Isolation and characterization of Methanobacterium formicicum MF. Int J Syst Bacteriol 37:171CrossRefGoogle Scholar
  7. 7.
    Bushnell B (2014) BBMap: a fast, accurate, splice-aware aligner. LBNL Report. Lawrence Berkeley National Laboratory, no. LBNL-7065E. Retrieved from https://escholarship.org/uc/item/7061h3515gn. Accessed 4 Dec 2018
  8. 8.
    Calusinska M, Marynowska M, Goux X, Lentzen E, Delfosse P (2016) Analysis of dsDNA and RNA viromes in methanogenic digesters reveals novel viral genetic diversity. Environ Microbiol 18:1162–1175.  https://doi.org/10.1111/1462-2920.13127 CrossRefGoogle Scholar
  9. 9.
    Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CPD, Dutilh BE, Thompson FL (2017) Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat Commun 8:15955.  https://doi.org/10.1038/ncomms15955 CrossRefGoogle Scholar
  10. 10.
    DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689.  https://doi.org/10.1073/pnas.89.12.5685 CrossRefGoogle Scholar
  11. 11.
    Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283.  https://doi.org/10.1016/S0079-6603(02)71045-3 CrossRefGoogle Scholar
  12. 12.
    Eiserling F, Pushkin A, Gingery M, Bertani G (1999) Bacteriophage-like particles associated with the gene transfer agent of Methanococcus voltae PS. J Gen Virol 80:3305–3308.  https://doi.org/10.1099/0022-1317-80-12-3305 CrossRefGoogle Scholar
  13. 13.
    Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230.  https://doi.org/10.1093/nar/gkt1223 CrossRefGoogle Scholar
  14. 14.
    Hales BA, Edwards C, Ritchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675Google Scholar
  15. 15.
    Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248.  https://doi.org/10.1016/S0065-2164(10)70007-1 CrossRefGoogle Scholar
  16. 16.
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589.  https://doi.org/10.1038/nmeth.4285 CrossRefGoogle Scholar
  17. 17.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefGoogle Scholar
  18. 18.
    Kelly WJ, Leahy SC, Li D, Perry R, Lambie SC, Attwood GT, Altermann E (2014) The complete genome sequence of the rumen methanogen Methanobacterium formicicum BRM9. Stand Genom Sci 9:15.  https://doi.org/10.1186/1944-3277-9-15 CrossRefGoogle Scholar
  19. 19.
    Krause L, Diaz NN, Edwards RA, Gartemann KH, Krömeke H, Neuweger H, Pühler A, Runte KJ, Schlüter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A (2008) Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol 136:91–101.  https://doi.org/10.1016/j.jbiotec.2008.06.003 CrossRefGoogle Scholar
  20. 20.
    Krupovic M, Forterre P, Bamford DH (2010) Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J Mol Biol 397:144–160.  https://doi.org/10.1016/j.jmb.2010.01.037 CrossRefGoogle Scholar
  21. 21.
    Krupovic M, Cvirkaite-Krupovic V, Iranzo J, Prangishvili D, Koonin EV (2018) Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Res 244:181–193.  https://doi.org/10.1016/j.virusres.2017.11.025 CrossRefGoogle Scholar
  22. 22.
    Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327.  https://doi.org/10.1038/nrmicro2315 CrossRefGoogle Scholar
  23. 23.
    Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT (2010) The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5:e8926.  https://doi.org/10.1371/journal.pone.0008926 CrossRefGoogle Scholar
  24. 24.
    Lima T, Auchincloss AH, Coudert E, Keller G, Michoud K, Rivoire C, Bulliard V, de Castro E, Lachaize C, Baratin D, Phan I, Bougueleret L, Bairoch A (2009) HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res 37:D471–D478.  https://doi.org/10.1093/nar/gkn661 CrossRefGoogle Scholar
  25. 25.
    Luo Y, Pfister P, Leisinger T, Wasserfallen A (2001) The genome of archaeal prophage ΨM100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J Bacteriol 183:5788–5792.  https://doi.org/10.1128/JB.183.19.5788-5792.2001 CrossRefGoogle Scholar
  26. 26.
    Maus I, Wibberg D, Stantscheff R, Cibis K, Eikmeyer FG, König H, Pühler A, Schlüter A (2013) Complete genome sequence of the hydrogenotrophic Archaeon Methanobacterium sp. Mb1 isolated from a production-scale biogas plant. J Biotechnol 168:734–736.  https://doi.org/10.1016/j.jbiotec.2013.10.013 CrossRefGoogle Scholar
  27. 27.
    Maus I, Stantscheff R, Wibberg D, Stolze Y, Winkler A, Pühler A, König H, Schlüter A (2014) Complete genome sequence of the methanogenic neotype strain Methanobacterium formicicum MFT. J Biotechnol 192:40–41.  https://doi.org/10.1016/j.jbiotec.2014.09.018 CrossRefGoogle Scholar
  28. 28.
    Mori K, Iino T, Suzuki K, Yamaguchi K, Kamagata Y (2012) Aceticlastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment. Appl Environ Microbiol 78:3416–3423.  https://doi.org/10.1128/AEM.07484-11 CrossRefGoogle Scholar
  29. 29.
    Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274.  https://doi.org/10.1093/molbev/msu300 CrossRefGoogle Scholar
  30. 30.
    Nölling J, Groffen A, de Vos WM (1993) φ F1 and φF3, two novel virulent, archaeal phages infecting different thermophilic strains of the genus Methanobacterium. J Gen Microbiol 39:2511–2516.  https://doi.org/10.1099/00221287-139-10-2511 CrossRefGoogle Scholar
  31. 31.
    Pfister P, Wasserfallen A, Stettler R, Leisinger T (1998) Molecular analysis of Methanobacterium phage ΨM2. Mol Microbiol 30:233–244.  https://doi.org/10.1046/j.1365-2958.1998.01073.x CrossRefGoogle Scholar
  32. 32.
    Prangishvili D, Garrett RA, Koonin EV (2006) Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life. Virus Res 117:52–67.  https://doi.org/10.1016/j.virusres.2006.01.007 CrossRefGoogle Scholar
  33. 33.
    Prangishvili D, Bamford DH, Forterre P, Iranzo J, Koonin EV, Krupovic M (2017) The enigmatic archaeal virosphere. Nat Rev Microbiol 15:724–739.  https://doi.org/10.1038/nrmicro.2017.125 CrossRefGoogle Scholar
  34. 34.
    Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–D504.  https://doi.org/10.1093/nar/gki025 CrossRefGoogle Scholar
  35. 35.
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, Poulos BT, Solonenko N, Lara E, Poulain J, Pesant S, Kandels-Lewis S, Dimier C, Picheral M, Searson S, Cruaud C, Alberti A, Duarte CM, Gasol JM, Vaque D, Tara Oceans C, Bork P, Acinas SG, Wincker P, Sullivan MB (2016) Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537:689–693.  https://doi.org/10.1038/nature19366 CrossRefGoogle Scholar
  36. 36.
    Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069.  https://doi.org/10.1093/bioinformatics/btu153 CrossRefGoogle Scholar
  37. 37.
    Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5:801–812CrossRefGoogle Scholar
  38. 38.
    Weidenbach K, Nickel L, Neve H, Alkhnbashi OS, Kunzel S, Kupczok A, Bauersachs T, Cassidy L, Tholey A, Backofen R, Schmitz RA (2017) Methanosarcina spherical virus, a novel archaeal lytic virus targeting Methanosarcina strains. J Virol 91:e00955-17.  https://doi.org/10.1128/JVI.00955-17 CrossRefGoogle Scholar
  39. 39.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703.  https://doi.org/10.1128/jb.173.2.697-703.1991 CrossRefGoogle Scholar
  40. 40.
    Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol 4:201–219.  https://doi.org/10.1146/annurev-virology-101416-041639 CrossRefGoogle Scholar
  41. 41.
    Wirth R, Kovacs E, Maroti G, Bagi Z, Rakhely G, Kovacs KL (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41.  https://doi.org/10.1186/1754-6834-5-41 CrossRefGoogle Scholar
  42. 42.
    Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886Google Scholar
  43. 43.
    Wood AG, Whitman WB, Konisky J (1989) Isolation and characterization of an archaebacterial viruslike particle from Methanococcus voltae A3. J Bacteriol 171:93–98CrossRefGoogle Scholar
  44. 44.
    Zhang JY, Gao Q, Zhang QT, Wang TX, Yue HW, Wu LW, Shi J, Qin ZY, Zhou JZ, Zuo JE, Yang YF (2017) Bacteriophage-prokaryote dynamics and interaction within anaerobic digestion processes across time and space. Microbiome 5:57.  https://doi.org/10.1186/s40168-017-0272-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für MikrobiologieTechnische Universität DresdenDresdenGermany
  2. 2.Institut für Allgemeine MikrobiologieChristian-Albrechts-Universität zu KielKielGermany
  3. 3.Bundesinstitut für RisikobewertungBerlinGermany
  4. 4.Medizinisches Labor Ostsachsen MVZDresdenGermany

Personalised recommendations