Advertisement

Archives of Virology

, Volume 163, Issue 1, pp 191–196 | Cite as

Adenovirus infection in savanna chimpanzees (Pan troglodytes schweinfurthii) in the Issa Valley, Tanzania

  • Eva Dadáková
  • Kristýna Brožová
  • Alex K. Piel
  • Fiona A. Stewart
  • David Modrý
  • Vladimír Celer
  • Kristýna HrazdilováEmail author
Brief Report

Abstract

Adenoviruses are a widespread cause of diverse human infections with recently confirmed zoonotic roots in African great apes. We focused on savanna-dwelling chimpanzees in the Issa Valley (Tanzania), which differ from those from forested sites in many aspects of behavior and ecology. PCR targeting the DNA polymerase gene detected AdV in 36.7% (69/188) of fecal samples. We detected five groups of strains belonging to the species Human mastadenovirus E and two distinct groups within the species Human mastadenovirus C based on partial hexon sequence. All detected AdVs from the Issa Valley are related to those from nearby Mahale and Gombe National Parks, suggesting chimpanzee movements and pathogen transmission.

Notes

Acknowledgements

We thank the Tanzanian Wildlife Research Institute (TAWIRI) and Tanzanian Commission for Science and Technology (COSTECH) for permission to conduct research in Tanzania. This research was carried out under the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Program of Sustainability II, by project LO1218 with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the NPU I programme, and further co-financed from the European Social Fund and the state budget of the Czech Republic (project OPVK CZ.1.07/2.3.00/20.0300). We acknowledge a grant for the Development of Research Organization (RVO: RO0516). Support for the Ugalla Primate Project and ongoing work at Issa comes from the UCSD/Salk Center for Academic Research and Training in Anthropogeny (CARTA). We also thank Klára Petrželková for assistance in the initial stage of project ideas and sampling design.

Compliance with ethical standards

Funding

All grants funding this study are listed in the Acknowledgment section.

Conflict of interest

All authors declare that he/she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

705_2017_3576_MOESM1_ESM.doc (33 kb)
Supplementary material 1 (DOC 33 kb)

References

  1. 1.
    Keita MB, Hamad I, Bittar F (2014) Looking in apes as a source of human pathogens. Microb Pathog. doi: 10.1016/j.micpath.2014.09.003 PubMedGoogle Scholar
  2. 2.
    Santiago ML, Rodenburg CM, Kamenya S et al (2002) SIVcpz in Wild Chimpanzees. Science 295(80):465CrossRefPubMedGoogle Scholar
  3. 3.
    Rudicell RS, Piel AK, Stewart F et al (2011) High prevalence of Simian immunodeficiency virus infection in a community of Savanna Chimpanzees. J Virol 85:9918–9928. doi: 10.1128/JVI.05475-11 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Leendertz FH, Zirkel F, Couacy-Hymann E et al (2008) Interspecies transmission of simian foamy virus in a natural predator-prey system. J Virol 82:7741–7744. doi: 10.1128/JVI.00549-08 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Junglen S, Hedemann C, Ellerbrok H et al (2010) Diversity of STLV-1 strains in wild chimpanzees (Pan troglodytes verus) from Côte d’Ivoire. Virus Res 150:143–147CrossRefPubMedGoogle Scholar
  6. 6.
    Reed PE, Mulangu S, Cameron KN et al (2014) A new approach for monitoring Ebolavirus in Wild Great Apes. PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0003143 Google Scholar
  7. 7.
    Hoppe E, Pauly M, Gillespie TR et al (2015) Multiple cross-species transmission events of human adenoviruses (HAdV) during hominine evolution. Mol Biol Evol 32:2072–2084. doi: 10.1093/molbev/msv090 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pantó L, Podgorski II, Jánoska M et al (2015) Taxonomy proposal for Old World monkey adenoviruses: characterisation of several non-human, non-ape primate adenovirus lineages. Arch Virol. doi: 10.1007/s00705-015-2575-z PubMedGoogle Scholar
  9. 9.
    Dadáková E, Chrudimský T, Brožová K et al (2017) New adenoviruses from new primate hosts—growing diversity reveals taxonomic weak points. Mol Phylogenet Evol 107:305–307. doi: 10.1016/j.ympev.2016.11.013 CrossRefPubMedGoogle Scholar
  10. 10.
    Tan B, Wu L-J, Yang X-L et al (2016) Isolation and characterization of adenoviruses infecting endangered golden snub-nosed monkeys (Rhinopithecus roxellana). Virol J 13:190. doi: 10.1186/s12985-016-0648-6 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wevers D, Metzger S, Babweteera F et al (2011) Novel adenoviruses in Wild primates : a high level of genetic diversity and evidence of Zoonotic transmissions. J Virol 85:10774–10784. doi: 10.1128/JVI.00810-11 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Roy S, Vandenberghe LH, Kryazhimskiy S et al (2009) Isolation and characterization of adenoviruses persistently shed from the gastrointestinal tract of non-human primates. PLoS Pathog 5:e1000503. doi: 10.1371/journal.ppat.1000503 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Roy S, Gao G, Clawson DS et al (2004) Complete nucleotide sequences and genome organization of four chimpanzee adenoviruses. Virology 324:361–372. doi: 10.1016/j.virol.2004.03.047 CrossRefPubMedGoogle Scholar
  14. 14.
    Collins DA, McGrew WC (1988) Habitats of three groups of chimpanzees (Pan troglodytes) in western Tanzania compared. J Hum Evol 17:553–574. doi: 10.1016/0047-2484(88)90084-X CrossRefGoogle Scholar
  15. 15.
    Kalousova B, Piel AK, Pomajbikova K et al (2014) Gastrointestinal Parasites of Savanna Chimpanzees (Pan troglodytes schweinfurthii) in Ugalla, Tanzania. Int J Primatol 35:463–475. doi: 10.1007/s10764-014-9753-9 CrossRefGoogle Scholar
  16. 16.
    Pruetz J, Bertolani P (2009) Chimpanzee (Pan troglodytes verus) behavioral responses to stresses associated with living in a Savannah-Mosaic environment: implications for Hominin adaptations to open habitats. PaleoAnthropology 2009:252–262. doi: 10.4207/PA.2009.ART33 CrossRefGoogle Scholar
  17. 17.
    Samson DR, Hunt KD (2014) Chimpanzees preferentially select sleeping platform construction tree species with biomechanical properties that yield stable, firm, but compliant nests. PloS One. doi: 10.1371/journal.pone.0095361 Google Scholar
  18. 18.
    Hernandez-Aguilar RA (2009) Chimpanzee nest distribution and site reuse in a dry habitat: implications for early hominin ranging. J Hum Evol 57:350–364. doi: 10.1016/j.jhevol.2009.03.007 CrossRefPubMedGoogle Scholar
  19. 19.
    Piel AK, Lenoel A, Johnson C, Stewart FA (2015) Deterring poaching in western Tanzania: the presence of wildlife researchers. Glob Ecol Conserv 3:188–199. doi: 10.1016/j.gecco.2014.11.014 CrossRefGoogle Scholar
  20. 20.
    Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi: 10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577CrossRefPubMedGoogle Scholar
  22. 22.
    Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi: 10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  23. 23.
    R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  24. 24.
    Seimon TA, Olson SH, Lee KJ et al (2015) Adenovirus and herpesvirus diversity in free-ranging great apes in the Sangha region of the Republic of Congo. PLoS One 10:1–18. doi: 10.1371/journal.pone.0118543 Google Scholar
  25. 25.
    Hoppe E, Pauly M, Robbins M et al (2015) Phylogenomic evidence for recombination of adenoviruses in wild gorillas. J Gen Virol 96:3090–3098. doi: 10.1099/jgv.0.000250 CrossRefPubMedGoogle Scholar
  26. 26.
    Tong S, Singh J, Ruone S et al (2010) Identification of adenoviruses in fecal specimens from wild chimpanzees (Pan trogylodytes schweinfurthii) in western Tanzania. Am J Trop Med Hyg 82:967–970. doi: 10.4269/ajtmh.2010.09-0668 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Inoue E, Tashiro Y, Ogawa H et al (2013) Gene flow and genetic diversity of Chimpanzees in Tanzanian habitats. Primate Conserv 26:67–74CrossRefGoogle Scholar
  28. 28.
    Piel AK, Stewart FA, Pintea L et al (2013) The Malagarasi river does not form an absolute barrier to Chimpanzee movement in Western Tanzania. PLoS One. doi: 10.1371/journal.pone.0058965 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Eva Dadáková
    • 1
  • Kristýna Brožová
    • 1
  • Alex K. Piel
    • 2
    • 3
  • Fiona A. Stewart
    • 2
    • 3
  • David Modrý
    • 4
    • 5
    • 6
  • Vladimír Celer
    • 1
    • 6
  • Kristýna Hrazdilová
    • 6
    • 7
    Email author
  1. 1.Department of Infectious Diseases and MicrobiologyUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  2. 2.School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
  3. 3.Ugalla Primate ProjectUvinzaTanzania
  4. 4.Department of Pathological Morphology and ParasitologyUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  5. 5.Biology Centre, Institute of ParasitologyCzech Academy of SciencesČeské BudějoviceCzech Republic
  6. 6.CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  7. 7.Department of VirologyVeterinary Research InstituteBrnoCzech Republic

Personalised recommendations