Advertisement

Archives of Virology

, Volume 162, Issue 9, pp 2679–2694 | Cite as

Evaluation of the impact of ul54 gene-deletion on the global transcription and DNA replication of pseudorabies virus

  • Zsolt Csabai
  • Irma F. Takács
  • Michael Snyder
  • Zsolt BoldogkőiEmail author
  • Dóra TombáczEmail author
Original Article

Abstract

Pseudorabies virus (PRV) is an animal alphaherpesvirus with a wide host range. PRV has 67 protein-coding genes and several non-coding RNA molecules, which can be classified into three temporal groups, immediate early, early and late classes. The ul54 gene of PRV and its homolog icp27 of herpes simplex virus have a multitude of functions, including the regulation of viral DNA synthesis and the control of the gene expression. Therefore, abrogation of PRV ul54 function was expected to exert a significant effect on the global transcriptome and on DNA replication. Real-time PCR and real-time RT-PCR platforms were used to investigate these presumed effects. Our analyses revealed a drastic impact of the ul54 mutation on the genome-wide expression of PRV genes, especially on the transcription of the true late genes. A more than two hour delay was observed in the onset of DNA replication, and the amount of synthesized DNA molecules was significantly decreased in comparison to the wild-type virus. Furthermore, in this work, we were able to successfully demonstrate the utility of long-read SMRT sequencing for genotyping of mutant viruses.

Notes

Acknowledgements

This research was supported by the Swiss–Hungarian Cooperation Programme SH/7/2/8 to ZB, by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program” to DT. This research was also supported by the Bolyai János Scholarship of the Hungarian Academy of Sciences: 2015-18 to DT. This study was also supported by the NIH CEGS Grant 5P50HG00773502 to MS.

Author contributions

ZB, DT and MS conceived and designed the study; ZC, IFT, DT and ZB performed the research; DT, ZC and ZB analyzed the data; ZB and DT wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Supplementary material

705_2017_3420_MOESM1_ESM.xls (74 kb)
Supplementary material 1 (XLS 74 kb)
705_2017_3420_MOESM2_ESM.xlsx (12 kb)
Supplementary material 2 (XLSX 12 kb)
705_2017_3420_MOESM3_ESM.xls (23 kb)
Supplementary material 3 (XLS 23 kb)

References

  1. 1.
    Aujeszky A (1902) A contagious disease, not readily distinguishable from rabies, with unknown origin. Veterinarius 25:387–396 (in Hungarian) Google Scholar
  2. 2.
    Szpara ML, Kobiler O, Enquist LW (2010) A common neuronal response to alphaherpesvirus infection. J Neuroimmune Pharmacol 5(3):418–427CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Card JP, Enquist LW (2001) Transneuronal circuit analysis with pseudorabies viruses. Curr Protoc Neurosci. doi: 10.1002/0471142301.ns0105s68 PubMedGoogle Scholar
  4. 4.
    Boldogkői Z, Sík A, Dénes A, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M (2004) Novel tracing paradigms-genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 72(6):417–445CrossRefPubMedGoogle Scholar
  5. 5.
    Yang M, Card JP, Tirabassi RS, Miselis RR, Enquist LW (1999) Retrograde, transneuronal spread of pseudorabies virus in defined neuronal circuitry of the rat brain is facilitated by gE mutations that reduce virulence. J Virol 73:4350–4359PubMedPubMedCentralGoogle Scholar
  6. 6.
    Song CK, Enquist LW, Bartness TJ (2005) New developments in tracing neural circuits with herpesviruses. Virus Res 111:235–249CrossRefPubMedGoogle Scholar
  7. 7.
    Granstedt AE, Kuhn B, Wang SS, Enquist LW (2010) Calcium imaging of neuronal circuits in vivo using a circuit-tracing pseudorabies virus. Cold Spring Harb Protoc. doi: 10.1101/pdb.prot5410 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Card JP, Kobiler O, Ludmir EB, Desai V, Sved AF, Enquist LW (2011) A dual infection pseudorabies virus conditional reporter approach to identify projections to collateralized neurons in complex neural circuits. PLoS One. doi: 10.1371/journal.pone.0021141 PubMedPubMedCentralGoogle Scholar
  9. 9.
    Boldogkői Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS, Takács IF, Scherf BG, Roska B (2009) Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6:127–130CrossRefPubMedGoogle Scholar
  10. 10.
    Granstedt AE, Szpara ML, Kuhn B, Wang SS, Enquist LW (2009) Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus. PLoS One. doi: 10.1371/journal.pone.0006923 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Prorok J, Kovács PP, Kristóf AA, Nagy N, Tombácz D, Tóth JS, Ördög B, Jost N, Virág L, Papp JG, Varró A, Tóth A, Boldogkői Z (2009) Herpesvirus-mediated delivery of a genetically encoded fluorescent Ca(2+) sensor to canine cardiomyocytes. J Biomed Biotechnol. doi: 10.1155/2009/361795 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Boldogkői Z, Nógrádi A (2003) Gene and cancer therapy—pseudorabies virus: a novel research and therapeutic tool? Curr Gene Ther 3:155–182CrossRefPubMedGoogle Scholar
  13. 13.
    Zhu L, Yi Y, Xu Z, Cheng L, Tang S, Guo W (2011) Growth, physicochemical properties, and morphogenesis of Chinese wild-type PRV Fa and its gene-deleted mutant strain PRV SA215. Virol J 8:272CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maresch C, Lange E, Teifke JP, Fuchs W, Klupp B, Müller T, Mettenleiter TC, Vahlenkamp TW (2012) Oral immunization of wild boar and domestic pigs with attenuated live vaccine protects against pseudorabies virus infection. Vet Microbiol 161:20–25CrossRefPubMedGoogle Scholar
  15. 15.
    Klingbeil K, Lange E, Teifke JP, Mettenleiter TC, Fuchs W (2014) Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the hemagglutinin of pandemic swine origin H1N1 influenza A virus. J Gen Virol 95:948–959CrossRefPubMedGoogle Scholar
  16. 16.
    Tombácz D, Sharon D, Oláh P, Csabai Z, Snyder M, Boldogkői Z (2014) Strain kaplan of pseudorabies virus genome sequenced by PacBio single-molecule real-time sequencing technology. Genome Announc. doi: 10.1128/genomeA.00628-14 Google Scholar
  17. 17.
    Tombácz D, Csabai Z, Oláh P, Balázs Z, Likó I, Zsigmond L, Sharon D, Snyder M, Boldogkői Z (2016) Full-length isoform sequencing reveals novel transcripts and substantial transcriptional overlaps in a herpesvirus. PLoS One. doi: 10.1371/journal.pone.0162868 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Tombácz D, Tóth JS, Petrovszki P, Boldogkoi Z (2009) Whole-genome analysis of pseudorabies virus gene expression by real-time quantitative RT-PCR assay. BMC Genomics. doi: 10.1186/1471-2164-10-491 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Flori L, Rogel-Gaillard C, Cochet M, Lemonnier G, Hugot K, Chardon P, Robin S, Lefèvre F (2008) Transcriptomic analysis of the dialogue between Pseudorabies virus and porcine epithelial cells during infection. BMC Genomics. doi: 10.1186/1471-2164-9-123 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Oláh P, Tombácz D, Póka N, Csabai Z, Prazsák I, Boldogkői Z (2015) Characterization of pseudorabies virus transcriptome by Illumina sequencing. BMC Microbiol. doi: 10.1186/s12866-015-0470-0 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Anderson K, Costa RH, Holland LE, Wagner EK (1980) Characterization of herpes simplex virus type 1 RNA. Present in the absence of de novo protein synthesis. J Virol 34(1):9–27PubMedPubMedCentralGoogle Scholar
  22. 22.
    Mackem S, Roizman B (1980) Regulation of herpesvirus macromolecular synthesis: transcription-initiation sites and domains of α genes. Proc Natl Acad Sci USA 77(12):7122–7126CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ihara S, Feldman L, Watanabe S, Ben-Porat T (1983) Characterization of the immediate-early functions of pseudorabies virus. Virology 131:437–454CrossRefPubMedGoogle Scholar
  24. 24.
    Cheung AK (1991) Cloning of the latency gene and the early protein 0 gene of pseudorabies virus. J Virol 65:5260–5271PubMedPubMedCentralGoogle Scholar
  25. 25.
    Huang C, Wu CY (2004) Characterization and expression of the pseudorabies virus early gene UL54. J Virol Methods 119:129–136CrossRefPubMedGoogle Scholar
  26. 26.
    Fuchs W, Ehrlich C, Klupp BG, Mettenleiter TC (2000) Characterization of the replication origin (Ori(S)) and adjoining parts of the inverted repeat sequences of the pseudorabies virus genome. J Gen Virol 81:1539–1543CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang G, Leader DP (1990) The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region. J Gen Virol 71:2433–2441CrossRefPubMedGoogle Scholar
  28. 28.
    Baumeister J, Klupp BG, Mettenleiter TC (1995) Pseudorabies virus and equine herpesvirus 1 share a nonessential gene which is absent in other herpesviruses and located adjacent to a highly conserved gene cluster. J Virol 6(9):5560–5567Google Scholar
  29. 29.
    Huang YJ, Chien MS, Wu CY, Huang C (2005) Mapping of functional regions conferring nuclear localization and RNA-binding activity of pseudorabies virus early protein UL54. J Virol Methods 130(1–2):102–107CrossRefPubMedGoogle Scholar
  30. 30.
    Sacks WR, Greene CC, Aschman DP, Schaffer PA (1985) Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J Virol 55:796–805PubMedPubMedCentralGoogle Scholar
  31. 31.
    Gruffat H, Batisse J, Pich D, Neuhierl B, Manet E, HammerschmidtW Sergeant A (2002) Epstein-Barr virus mRNA export factor EB2 is essential for production of infectious virus. J Virol 76(19):9635–9644CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sato B, Sommer M, Ito H, Arvin AM (2003) Requirement of varicella-zoster virus immediate-early 4 protein for viral replication. J Virol 77(22):12369–12372CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schwartz JA, Brittle EE, Reynolds AE, Enquist LW, Silverstein SJ (2006) UL54-null pseudorabies virus is attenuated in mice but productively infects cells in culture. J Virol 80(2):769–784CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hardwicke MA, Sandri-Goldin RM (1994) The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol 68:4797–4810PubMedPubMedCentralGoogle Scholar
  35. 35.
    McGregor F, Phelan A, Dunlop J, Clements JB (1996) Regulation of herpes simplex virus poly(A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol 70(3):1931–1940PubMedPubMedCentralGoogle Scholar
  36. 36.
    Hayashi ML, Blankenship C, Shenk T (2000) Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc Natl Acad Sci USA 97:2692–2696CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li M, Wang S, Cai M, Guo H, Zheng C (2011) Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology 417(2):385–393CrossRefPubMedGoogle Scholar
  38. 38.
    Li M, Wang S, Cai M, Zheng C (2011) Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J Virol 85(19):10239–10251CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Elhai J, Wolk CP (1988) A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68(1):119–138CrossRefPubMedGoogle Scholar
  40. 40.
    Some genetic functions encoded by herpes simplex virus type 1. http://darwin.bio.uci.edu/~faculty/wagner/table.html
  41. 41.
    The genetic and transcription map of the HSV-1 genome. http://darwin.bio.uci.edu/~faculty/wagner/hsvimg04z.jpg
  42. 42.
    Roizman B (1996) The function of herpes simplex virus genes: A primer for genetic engineering of novel vectors. Proc Nat Acad Sci USA 93:11307–11312CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Roizman B, Campadelli-Fiume G (2007) Alphaherpes viral genes and their functions. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses—biology, therapy and immunoprophylaxis, 1st edn. Cambridge University Press, Cambridge, pp 70–92CrossRefGoogle Scholar
  44. 44.
    Tombácz D, Balázs Z, Csabai Z, Moldován N, Szűcs A, Sharon D, Snyder M, Boldogkői Z (2017) Characterization of the dynamic transcriptome of a herpesvirus with long-read single molecule real-time sequencing. Sci Rep. doi: 10.1038/srep43751 Google Scholar
  45. 45.
    Klupp BG, Hengartner CJ, Mettenleiter TC, Enquist LW (2004) Complete, annotated sequence of the pseudorabies virus genome. J Virol 78:424–440CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bras F, Dezelee S, Simonet B, Nguyen X, Vende P, Flamand A, Masse MJ (1999) The left border of the genomic inversion of pseudorabies virus contains genes homologous to the UL46 and UL47 genes of herpes simplex virus type 1, but no UL45 gene. Virus Res 60:29–40CrossRefPubMedGoogle Scholar
  47. 47.
    Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69(3):462–500CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Reynolds AE, Fan Y, Baines JD (2000) Characterization of the UL33 gene product of herpes simplex virus 1. Virology 266:310–318CrossRefPubMedGoogle Scholar
  49. 49.
    Klupp BG, Fuchs W, Granzow H, Nixdorf R, Mettenleiter TC (2002) Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76:3065–3071CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ambagala AP, Hinkley S, Srikumaran S (2000) An early pseudorabies virus protein down-regulates porcine MHC class I expression by inhibition of transporter associated with antigen processing (TAP). J Immunol 164:93–99CrossRefPubMedGoogle Scholar
  51. 51.
    de Wind N, Berns A, Gielkens A, Kimman T (1993) Ribonucleotide reductase-deficient mutants of pseudorabies virus are avirulent for pigs and induce partial protective immunity. J Gen Virol 74:351–359CrossRefPubMedGoogle Scholar
  52. 52.
    Powers L, Wilkinson KS, Ryan P (1994) Characterization of the prv43 gene of pseudorabies virus and demonstration that it is not required for virus growth in cell culture. Virology 199:81–88CrossRefPubMedGoogle Scholar
  53. 53.
    Robbins AK, Watson RJ, Whealy ME, Hays WW, Enquist LW (1986) Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein. J Virol 58(2):339–347PubMedPubMedCentralGoogle Scholar
  54. 54.
    Dezélée S, Bras F, Vende P, Simonet B, Nguyen X, Flamand A, Masse MJ (1996) The BamHI fragment 9 of pseudorabies virus contains genes homologous to the UL24, UL25, UL26, and UL 26.5 genes of herpes simplex virus type 1. Virus Res 42:27–39CrossRefPubMedGoogle Scholar
  55. 55.
    Tombácz D, Csabai Z, Oláh P, Havelda Z, Sharon D, Snyder M, Boldogkői Z (2015) Characterization of novel transcripts in pseudorabies virus. Viruses 7(5):2727–2744CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Yamada S, Imada T, Watanabe W, Honda Y, Nakajima-Iijima S, Shimizu Y, Sekikawa K (1991) Nucleotide sequence and transcriptional mapping of the major capsid protein gene of pseudorabies virus. Virology 185:56–66CrossRefPubMedGoogle Scholar
  57. 57.
    Dijkstra JM, Fuchs W, Mettenleiter TC, Klupp BG (1997) Identification and transcriptional analysis of pseudorabies virus UL6 to UL12 genes. Arch Virol 142:17–35CrossRefPubMedGoogle Scholar
  58. 58.
    Dean H, Cheung AK (1993) A 3’coterminal gene cluster in pseudorabies virus contains herpes simplex virus UL1, UL2, UL3 gene homologs and a unique UL3.5 open reading frame. J Virol 67:5955–5961PubMedPubMedCentralGoogle Scholar
  59. 59.
    Krause PR, Croen KD, Ostrove JM, Straus SE (1990) Structural and kinetic analyses of herpes simplex virus type I latencyassociated transcripts in human trigeminal ganglia and in cell culture. J Clin Invest 86(1):235–241CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Brideau AD, Banfield BW, Enquist LW (1998) The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. J Virol 72:4560–4570PubMedPubMedCentralGoogle Scholar
  61. 61.
    Tombácz D, Tóth JS, Boldogkoi Z (2011) Deletion of the virion host shut: off gene of pseudorabies virus results in selective upregulation of the expression of early viral genes in the late stage of infection. Genomics 98(1):15–25CrossRefPubMedGoogle Scholar
  62. 62.
    Campbell AM, Heyer LJ (2007) Basic research with DNA microarray. In: Winslow S (ed) Discovering genomics proteomics and bioinformatics, 2nd edn. CSHL Press, San Francisco, pp 238–241Google Scholar
  63. 63.
    Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, Vandesompele J (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. doi: 10.1186/gb-2009-10-6-r64 PubMedPubMedCentralGoogle Scholar
  64. 64.
    Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. doi: 10.1093/nar/gkq543 Google Scholar
  65. 65.
    Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ, Korlach J (2012) Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. doi: 10.1093/nar/gkr1146 Google Scholar
  66. 66.
    Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192CrossRefPubMedGoogle Scholar
  67. 67.
    Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28(4):464–469CrossRefPubMedGoogle Scholar
  68. 68.
    Boldogkői Z (2012) Transcriptional interference networks coordinate the expression of functionally related genes clustered in the same genomic loci. Front Genet. doi: 10.3389/fgene.2012.00122 PubMedPubMedCentralGoogle Scholar
  69. 69.
    Tombácz D, Tóth JS, Boldogkői Z (2012) Effects of deletion of the early protein 0 gene of pseudorabies virus on the overall viral gene expression. Gene. doi: 10.1016/j.gene.2011.11.049 Google Scholar
  70. 70.
    Takács IF, Tombácz D, Berta B, Prazsák I, Póka N, Boldogkői Z (2013) The ICP22 protein selectively modifies the transcription of different kinetic classes of pseudorabies virus genes. BMC Mol Biol. doi: 10.1186/1471-2199-14-2 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Medical Biology, Faculty of MedicineUniversity of SzegedSzegedHungary
  2. 2.Department of Genetics, School of MedicineStanford UniversityStanfordUSA

Personalised recommendations