Archives of Virology

, Volume 162, Issue 9, pp 2539–2551 | Cite as

Flavonoids: promising natural compounds against viral infections

  • Hovakim ZakaryanEmail author
  • Erik Arabyan
  • Adrian Oo
  • Keivan Zandi


Flavonoids are widely distributed as secondary metabolites produced by plants and play important roles in plant physiology, having a variety of potential biological benefits such as antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal and antiviral activity. Different flavonoids have been investigated for their potential antiviral activities and several of them exhibited significant antiviral properties in in vitro and even in vivo studies. This review summarizes the evidence for antiviral activity of different flavonoids, highlighting, where investigated, the cellular and molecular mechanisms of action on viruses. We also present future perspectives on therapeutic applications of flavonoids against viral infections.



The authors acknowledge all reviewers whose detailed comments improved the review and apologize to those authors whose contribution to flavonoids antiviral research may have been inadvertently missed.

Compliance with ethical standards

Ethical standards

This study is supported by the RA MES State Committee of Science, in the frames of the research projects 15RF-081 and 16YR-1F064. All authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Ahmadi A, Hassandarvish P, Lani R, Yadollahi P, Jokar A, Bakar SA, Zandi K (2016) Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Adv 6:69421–69430. doi: 10.1039/C6RA16640G CrossRefGoogle Scholar
  2. 2.
    Akula SM, Hurley DJ, Wixon RL, Wang C, Chase CC (2002) Effect of genistein on replication of bovine herpesvirus type 1. Am J Vet Res 63(8):1124–1128PubMedCrossRefGoogle Scholar
  3. 3.
    Argenta DF, Silva IT, Bassani VL, Koester LS, Teixeira HF, Simões CM (2015) Antiherpes evaluation of soybean isoflavonoids. Arch Virol 160(9):2335–2342. doi: 10.1007/s00705-015-2514-z PubMedCrossRefGoogle Scholar
  4. 4.
    Bachmetov L, Gal-Tanamy M, Shapira A, Vorobeychik M, Giterman-Galam T, Sathiyamoorthy P, Golan-Goldhirsh A, Benhar I, Tur-Kaspa R, Zemel R (2012) Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J Viral Hepat 19(2):e81–e88. doi: 10.1111/j.1365-2893.2011.01507.x PubMedCrossRefGoogle Scholar
  5. 5.
    Behbahani M, Sayedipour S, Pourazar A, Shanehsazzadeh M (2014) In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca. Res Pharm Sci 9(6):463–469PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bowles D, Isayenkova J, Lim EK, Poppenberger B (2005) Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol 8(3):254–263. doi: 10.1016/j.pbi.2005.03.007 PubMedCrossRefGoogle Scholar
  7. 7.
    Bullock AN, Debreczeni JÉ, Fedorov OY, Nelson A, Marsden BD, Knapp S (2005) Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase. J Med Chem 48:7604–7614. doi: 10.1021/jm0504858 PubMedCrossRefGoogle Scholar
  8. 8.
    Calland N, Albecka A, Belouzard S, Wychowski C, Duverlie G, Descamps V, Hober D, Dubuisson J, Rouillé Y, Séron K (2012) (−)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 55(3):720–729. doi: 10.1002/hep.24803 PubMedCrossRefGoogle Scholar
  9. 9.
    Carletti G, Nervo G, Cattivelli L (2014) Flavonoids and Melanins: a common strategy across two kingdoms. Int J Biol Sci 10(10):1159–1170PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Carneiro BM, Batista MN, Braga ACS, Nogueira ML, Rahal P (2016) The green tea molecule EGCG inhibits Zika virus entry. Virology 496:215–218. doi: 10.7150/ijbs.9672 PubMedCrossRefGoogle Scholar
  11. 11.
    Carvalho OV, Botelho CV, Ferreira CG, Ferreira HC, Santos MR, Diaz MA, Oliveira TT, Soares-Martins JA, Almeida MR, Silva A Jr (2013) In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: implications of structural differences for antiviral design. Res Vet Sci 95(2):717–724. doi: 10.1016/j.rvsc.2013.04.013 PubMedCrossRefGoogle Scholar
  12. 12.
    Castrillo M, Córdova T, Cabrera G, Rodríguez-Ortega M (2015) Effect of naringenin, hesperetin and their glycosides forms on the replication of the 17D strain of yellow fever virus. Avan Biomed 4:69–78Google Scholar
  13. 13.
    Chang LK, Wei TT, Chiu YF, Tung CP, Chuang JY, Hung SK, Li C, Liu ST (2003) Inhibition of Epstein-Barr virus lytic cycle by (−)-epigallocatechin gallate. Biochem Biophys Res Commun 301(4):1062–1068PubMedCrossRefGoogle Scholar
  14. 14.
    Chantrill BH, Coulthard CE, Dickinson L, Inkley GW, Morris W, Pyle AH (1952) The action of plant extracts on a bacteriophage of Pseudomonas pyocyanea and on influenza A virus. J Gen Microbiol 6:74–84. doi: 10.1099/00221287-6-1-2-74 PubMedCrossRefGoogle Scholar
  15. 15.
    Chen C, Qiu H, Gong J, Liu Q, Xiao H, Chen XW, Sun BL, Yang RG (2012) (−)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus. Arch Virol 157(7):1301–1312. doi: 10.1007/s00705-012-1304-0 PubMedCrossRefGoogle Scholar
  16. 16.
    Chiang LC, Chiang W, Liu MC, Lin CC (2003) In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J Antimicrob Chemother 52(2):194–198. doi: 10.1093/jac/dkg291 PubMedCrossRefGoogle Scholar
  17. 17.
    Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC (2005) Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin Exp Pharmacol Physiol 32:811–816. doi: 10.1111/j.1440-1681.2005.04270.x PubMedCrossRefGoogle Scholar
  18. 18.
    Cho WK, Weeratunga P, Lee BH, Park JS, Kim CJ, Ma JY, Lee JS (2015) Epimedium koreanum Nakai displays broad spectrum of antiviral activity in vitro and in vivo by inducing cellular antiviral state. Viruses 7(1):352–377. doi: 10.3390/v7010352 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chu M, Xu L, Zhang MB, Chu ZY, Wang YD (2015) Role of Baicalin in anti-influenza virus A as a potent inducer of IFN-gamma. Biomed Res Int 2015:263630. doi: 10.1155/2015/263630 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Chu SC, Hsieh YS, Lin JY (1992) Inhibitory effects of flavonoids on Moloney murine leukemia virus reverse transcriptase activity. J Nat Prod 55(2):179–183PubMedCrossRefGoogle Scholar
  21. 21.
    Chung ST, Chien PY, Huang WH, Yao CW, Lee AR (2014) Synthesis and anti-influenza activities of novel baicalein analogs. Chem Pharm Bull (Tokyo) 62(5):415–421CrossRefGoogle Scholar
  22. 22.
    Colpitts CC, Schang LM (2014) A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J Virol 88(14):7806–7817. doi: 10.1128/JVI.00896-14 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cotin S, Calliste CA, Mazeron MC, Hantz S, Duroux JL, Rawlinson WD, Ploy MC, Alain S (2012) Eight flavonoids and their potential as inhibitors of human cytomegalovirus replication. Antiviral Res 96(2):181–186. doi: 10.1016/j.antiviral.2012.09.010 PubMedCrossRefGoogle Scholar
  24. 24.
    Croft KD (1998) The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci 854:435–442PubMedCrossRefGoogle Scholar
  25. 25.
    Dayem AA, Choi HY, Kim YB, Cho S-G (2015) Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One 10:e0121610. doi: 10.1371/journal.pone.0121610 PubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ding Y, Dou J, Teng Z, Yu J, Wang T, Lu N, Wang H, Zhou C (2014) Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and in mice and its inhibition of neuraminidase. Arch Virol 159(12):3269–3278. doi: 10.1007/s00705-014-2192-2 PubMedCrossRefGoogle Scholar
  27. 27.
    dos Santos AE, Kuster RM, Yamamoto KA, Salles TS, Campos R, de Meneses MD, Soares MR, Ferreira D (2014) Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity. Parasit Vectors 7:130. doi: 10.1186/1756-3305-7-130 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dou J, Chen L, Xu G, Zhang L, Zhou H, Wang H, Su Z, Ke M, Guo Q, Zhou C (2011) Effects of baicalein on Sendai virus in vivo are linked to serum baicalin and its inhibition of hemagglutinin-neuraminidase. Arch Virol 156(5):793–801. doi: 10.1007/s00705-011-0917-z PubMedCrossRefGoogle Scholar
  29. 29.
    Dube A, Nicolazzo JA, Larson I (2010) Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. Eur J Pharm Sci 41:219–225. doi: 10.1016/j.ejps.2010.06.010 PubMedCrossRefGoogle Scholar
  30. 30.
    Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177. doi: 10.3389/fphar.2013.00177 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Evers DL, Chao CF, Wang X, Zhang Z, Huong SM, Huang ES (2005) Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action. Antiviral Res 68(3):124–134. doi: 10.1016/j.antiviral.2005.08.002 PubMedCrossRefGoogle Scholar
  32. 32.
    Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222. doi: 10.3389/fpls.2012.00222 PubMedPubMedCentralGoogle Scholar
  33. 33.
    Fan W, Qian S, Qian P, Li X (2016) Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res 220:112–116. doi: 10.1016/j.virusres.2016.04.021 PubMedCrossRefGoogle Scholar
  34. 34.
    Fatima K, Mathew S, Suhail M, Ali A, Damanhouri G, Azhar E, Qadri I (2014) Docking studies of Pakistani HCV NS3 helicase: a possible antiviral drug target. PLoS One 9(9):e106339. doi: 10.1371/journal.pone.0106339 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46(3):356–370. doi: 10.1016/j.plaphy.2007.12.009 PubMedCrossRefGoogle Scholar
  36. 36.
    French CJ, Towers GN (1992) Inhibition of infectivity of potato virus X by flavonoids. Phytochemistry 31:3017–3020CrossRefGoogle Scholar
  37. 37.
    Ganesan S, Faris AN, Comstock AT, Wang Q, Nanua S, Hershenson MB, Sajjan US (2012) Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res 94(3):258–271. doi: 10.1016/j.antiviral.2012.03.005 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gao J, Xiao S, Liu X, Wang L, Ji Q, Mo D, Chen Y (2014) Inhibition of HSP70 reduces porcine reproductive and respiratory syndrome virus replication in vitro. BMC Microbiol 14:64. doi: 10.1186/1471-2180-14-64 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Goldwasser J, Cohen PY, Lin W, Kitsberg D, Balaguer P, Polyak SJ, Chung RT, Yarmush ML, Nahmias Y (2011) Naringenin inhibits the assembly and long-term production of infectious hepatitis C virus particles through a PPAR-mediated mechanism. J Hepatol 55(5):963–971. doi: 10.1016/j.jhep.2011.02.011 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gorlach S, Fichna J, Lewandowska U (2015) Polyphenols as mitochondria-targeted anticancer drugs. Cancer Lett 366(2):141–149. doi: 10.1016/j.canlet.2015.07.004 PubMedCrossRefGoogle Scholar
  41. 41.
    Gravina HD, Tafuri NF, Silva Júnior A, Fietto JL, Oliveira TT, Diaz MA, Almeida MR (2011) In vitro assessment of the antiviral potential of trans-cinnamic acid, quercetin and morin against equid herpesvirus 1. Res Vet Sci 91(3):e158–e162. doi: 10.1016/j.rvsc.2010.11.010 PubMedCrossRefGoogle Scholar
  42. 42.
    Guo J, Xu X, Rasheed TK, Yoder A, Yu D, Liang H, Yi F, Hawley T, Jin T, Ling B, Wu Y (2013) Genistein interferes with SDF-1- and HIV-mediated actin dynamics and inhibits HIV infection of resting CD4 T cells. Retrovirology 10:62. doi: 10.1186/1742-4690-10-62 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Guo Q, Zhao L, You Q, Yang Y, Gu H, Song G, Lu N, Xin J (2007) Anti-hepatitis B virus activity of wogonin in vitro and in vivo. Antiviral Res 74:16–24. doi: 10.1016/j.antiviral.2007.01.002 PubMedCrossRefGoogle Scholar
  44. 44.
    Güttner J, Veckenstedt A, Heinecke H, Pusztai R (1982) Effect of quercetin on the course of mengo virus infection in immunodeficient and normal mice. A histologic study. Acta Virol 26(3):148–155PubMedGoogle Scholar
  45. 45.
    Ha SY, Youn H, Song CS, Kang SC, Bae JJ, Kim HT, Lee KM, Eom TH, Kim IS, Kwak JH (2014) Antiviral effect of flavonol glycosides isolated from the leaf of Zanthoxylum piperitum on influenza virus. J Microbiol 52(4):340–344. doi: 10.1007/s12275-014-4073-5 PubMedCrossRefGoogle Scholar
  46. 46.
    Hakobyan A, Arabyan E, Avetisyan A, Abroyan L, Hakobyan L, Zakaryan H (2016) Apigenin inhibits African swine fever virus infection in vitro. Arch Virol 161(12):3445–3453. doi: 10.1007/s00705-016-3061-y PubMedCrossRefGoogle Scholar
  47. 47.
    Hassandarvish P, Rothan HA, Rezaei S, Yusof R, Abubakar S, Zandi K (2016) In silico study on baicalein and baicalin as inhibitors of dengue virus replication. RSC Advances 6:31235–31247. doi: 10.1039/C6RA00817H CrossRefGoogle Scholar
  48. 48.
    He W, Li LX, Liao QJ, Liu CL, Chen XL (2011) Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replication—inducible cell line. World J Gastroenterol 17(11):1507–1514. doi: 10.3748/wjg.v17.i11.1507 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hollman PC, Bijsman MN, van Gameren Y, Cnossen EP, de Vries JH, Katan MB (1999) The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic Res 31:569–573PubMedCrossRefGoogle Scholar
  50. 50.
    Huang HC, Tao MH, Hung TM, Chen JC, Lin ZJ, Huang C (2014) (−)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antiviral Res 111:100–111. doi: 10.1016/j.antiviral.2014.09.009 PubMedCrossRefGoogle Scholar
  51. 51.
    Hung PY, Ho BC, Lee SY, Chang SY, Kao CL, Lee SS, Lee CN (2015) Houttuynia cordata targets the beginning stage of herpes simplex virus infection. PLoS One 10(2):e0115475. doi: 10.1371/journal.pone.0115475 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Imanishi N, Tuji Y, Katada Y, Maruhashi M, Konosu S, Mantani N, Terasawa K, Ochiai H (2002) Additional inhibitory effect of tea extract on the growth of influenza A and B viruses in MDCK cells. Microbiol Immunol 46(7):491–494PubMedCrossRefGoogle Scholar
  53. 53.
    Iranshahi M, Rezaee R, Parhiz H, Roohbakhsh A, Soltani F (2015) Protective effects of flavonoids against microbes and toxins: the cases of hesperidin and hesperetin. Life Sci 137:125–132. doi: 10.1016/j.lfs.2015.07.014 PubMedCrossRefGoogle Scholar
  54. 54.
    Isaacs CE, Wen GY, Xu W, Jia JH, Rohan L, Corbo C, Di Maggio V, Jenkins EC Jr, Hillier S (2008) Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother 52(3):962–970. doi: 10.1128/AAC.00825-07 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Isaacs CE, Xu W, Merz G, Hillier S, Rohan L, Wen GY (2011) Digallate dimers of (−)-epigallocatechin gallate inactivate herpes simplex virus. Antimicrob Agents Chemother 55(12):5646–5653. doi: 10.1128/AAC.05531-11 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jaganath IB, Jaganath IB, Mullen W, Edwards CA, Crozier A (2006) The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Rad Res 40:1035–1046CrossRefGoogle Scholar
  57. 57.
    Jeong HJ, Ryu YB, Park S-J, Kim JH, Kwon H-J, Kim JH, Park KH, Rho M-C, Lee WS (2009) Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg Med Chem 17:6816–6823. doi: 10.1016/j.bmc.2009.08.036 PubMedCrossRefGoogle Scholar
  58. 58.
    Ji S, Li R, Wang Q, Miao WJ, Li ZW, Si LL, Qiao X, Yu SW, Zhou DM, Ye M (2015) Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. J Ethnopharmacol 176:475–484. doi: 10.1016/j.jep.2015.11.018 PubMedCrossRefGoogle Scholar
  59. 59.
    Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K (2012) Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int J Mol Sci 13(12):16785–16795. doi: 10.3390/ijms131216785 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, Lee HB, Cho SH (2004) Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm 274:65–73. doi: 10.1016/j.ijpharm.2003.12.028 PubMedCrossRefGoogle Scholar
  61. 61.
    Kaul TN, Middleton E, Ogra PL (1985) Antiviral effect of flavonoids on human viruses. J Med Virol 15:71–79PubMedCrossRefGoogle Scholar
  62. 62.
    Kawai K, Tsuno NH, Kitayama J, Okaji Y, Yazawa K, Asakage M, Hori N, Watanabe T, Takahashi K, Nagawa H (2003) Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding. J Allergy Clin Immunol 112(5):951–957. doi: 10.1016/S0091 PubMedCrossRefGoogle Scholar
  63. 63.
    Keum Y-S, Jeong Y-J (2012) Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target. Biochem Pharm 84:1351–1358. doi: 10.1016/j.bcp.2012.08.012 PubMedCrossRefGoogle Scholar
  64. 64.
    Khachatoorian R, Arumugaswami V, Raychaudhuri S, Yeh GK, Maloney EM, Wang J, Dasgupta A, French SW (2012) Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. Virology 433(2):346–355. doi: 10.1016/j.virol.2012.08.029 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Khan N, Syed DN, Ahmad N, Mukhtar H (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19(2):151–162. doi: 10.1089/ars.2012.4901 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kim M, Kim SY, Lee HW, Shin JS, Kim P, Jung YS, Jeong HS, Hyun JK, Lee CK (2013) Inhibition of influenza virus internalization by (−)-epigallocatechin-3-gallate. Antiviral Res 100(2):460–472. doi: 10.1016/j.antiviral.2013.08.002 PubMedCrossRefGoogle Scholar
  67. 67.
    Knipping K, Garssen J, van’t Land B (2012) An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virol J 9:137. doi: 10.1186/1743-422X-9-137 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kolokoltsov AA, Adhikary S, Garver J, Johnson L, Davey RA, Vela EM (2012) Inhibition of Lassa virus and Ebola virus infection in host cells treated with the kinase inhibitors genistein and tyrphostin. Arch Virol 157(1):121–127. doi: 10.1007/s00705-011-1115-8 PubMedCrossRefGoogle Scholar
  69. 69.
    Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750. doi: 10.1155/2013/162750 Google Scholar
  70. 70.
    Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC (2010) Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B Biointerfaces 80:184–192. doi: 10.1016/j.colsurfb.2010.06.002 PubMedCrossRefGoogle Scholar
  71. 71.
    Landete J (2012) Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Crit Rev Food Sci Nutr 52:936–948. doi: 10.1080/10408398.2010.513779 PubMedCrossRefGoogle Scholar
  72. 72.
    Lani R, Hassandarvish P, Chiam CW, Moghaddam E, Chu JJH, Rausalu K, Merits A, Higgs S, Vanlandingham D, Bakar SA (2015) Antiviral activity of silymarin against chikungunya virus. Sci Rep 5:11421. doi: 10.1038/srep11421 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lani R, Hassandarvish P, Shu MH, Phoon WH, Chu JJ, Higgs S, Vanlandingham D, Abu Bakar S, Zandi K (2016) Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Res 133:50–61. doi: 10.1016/j.antiviral.2016.07.009 PubMedCrossRefGoogle Scholar
  74. 74.
    Lee HS, K-s Park, Lee C, Lee B, Kim D-E, Chong Y (2010) 7-O-Arylmethylgalangin as a novel scaffold for anti-HCV agents. Bioorg Med Chem Lett 20:5709–5712. doi: 10.1016/j.bmcl.2010.08.012 PubMedCrossRefGoogle Scholar
  75. 75.
    Li BQ, Fu T, Dongyan Y, Mikovits JA, Ruscetti FW, Wang JM (2000) Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun 276:534–538. doi: 10.1006/bbrc.2000.3485 PubMedCrossRefGoogle Scholar
  76. 76.
    Lin YJ, Chang YC, Hsiao NW, Hsieh JL, Wang CY, Kung SH, Tsai FJ, Lan YC, Lin CW (2012) Fisetin and rutin as 3C protease inhibitors of enterovirus A71. J Virol Methods 182(1–2):93–98. doi: 10.1016/j.jviromet.2012.03.020 PubMedCrossRefGoogle Scholar
  77. 77.
    Liu A-L, Wang H-D, Lee SM, Wang Y-T, Du G-H (2008) Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem 16:7141–7147. doi: 10.1016/j.bmc.2008.06.049 PubMedCrossRefGoogle Scholar
  78. 78.
    Liu S, Li H, Chen L, Yang L, Li L, Tao Y, Li W, Li Z, Liu H, Tang M, Bode AM, Dong Z, Cao Y (2013) (−)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells. Carcinogenesis 34(3):627–637. doi: 10.1093/carcin/bgs364 PubMedCrossRefGoogle Scholar
  79. 79.
    Liu Z, Zhao J, Li W, Shen L, Huang S, Tang J, Duan J, Fang F, Huang Y, Chang H, Chen Z, Zhang R (2016) Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine. Sci Rep 6:19095. doi: 10.1038/srep19095 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Liu Z, Zhao J, Li W, Wang X, Xu J, Xie J, Tao K, Shen L, Zhang R (2015) Molecular docking of potential inhibitors for influenza H7N9. Comput Math Methods Med 2015:480764. doi: 10.1155/2015/480764 PubMedPubMedCentralGoogle Scholar
  81. 81.
    Lu N, Khachatoorian R, French SW (2012) Quercetin: bioflavonoids as part of interferon-free hepatitis C therapy? Expert Rev Anti Infect Ther 10(6):619–621. doi: 10.1586/eri.12.52 PubMedCrossRefGoogle Scholar
  82. 82.
    Lv X, Qiu M, Chen D, Zheng N, Jin Y, Wu Z (2014) Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. Antiviral Res 109:30–41. doi: 10.1016/j.antiviral.2014.06.004 PubMedCrossRefGoogle Scholar
  83. 83.
    Lyu SY, Rhim JY, Park WB (2005) Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch Pharm Res 28(11):1293–1301PubMedCrossRefGoogle Scholar
  84. 84.
    Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Manvar D, Mishra M, Kumar S, Pandey VN (2012) Identification and evaluation of antihepatitis C virus phytochemicals from Eclipta alba. J Ethnopharmacol 144(3):545–554. doi: 10.1016/j.jep.2012.09.036 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mathew S, Fatima K, Fatmi MQ, Archunan G, Ilyas M, Begum N, Azhar E, Damanhouri G, Qadri I (2015) Computational docking study of p7 Ion channel from HCV genotype 3 and genotype 4 and its interaction with natural compounds. PLoS One 10(6):e0126510. doi: 10.1371/journal.pone.0126510 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mehla R, Bivalkar-Mehla S, Chauhan A (2011) A flavonoid, luteolin, cripples HIV-1 by abrogation of tat function. PLoS One 6(11):e27915. doi: 10.1371/journal.pone.0027915 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52(4):673–751PubMedGoogle Scholar
  89. 89.
    Mitrocotsa D, Mitaku S, Axarlis S, Harvala C, Malamas M (2000) Evaluation of the antiviral activity of kaempferol and its glycosides against human cytomegalovirus. Planta Med 66(4):377–379. doi: 10.1055/s-2000-8550 PubMedCrossRefGoogle Scholar
  90. 90.
    Moco S, Fo-PJ Martin, Rezzi S (2012) Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res 11:4781–4790. doi: 10.1021/pr300581s PubMedCrossRefGoogle Scholar
  91. 91.
    Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik Z, Yueh A, Abubakar S, Zandi K (2014) Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci Rep 4:5452. doi: 10.1038/srep05452 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Mucsi I, Gyulai Z, Béládi I (1992) Combined effects of flavonoids and acyclovir against herpesviruses in cell cultures. Acta Microbiol Hung 39(2):137–147PubMedGoogle Scholar
  93. 93.
    Mullen W, Edwards CA, Crozier A (2006) Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl-and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr 96:107–116PubMedCrossRefGoogle Scholar
  94. 94.
    Murali KS, Sivasubramanian S, Vincent S, Murugan SB, Giridaran B, Dinesh S, Gunasekaran P, Krishnasamy K, Sathishkumar R (2015) Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon. Asian Pac J Trop Med 8(5):352–358. doi: 10.1016/S1995-7645(14)60343-6 PubMedCrossRefGoogle Scholar
  95. 95.
    Nabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, Gortzi O, Nabavi SM (2015) Neuroprotective effects of chrysin: from chemistry to medicine. Neurochem Int 90:224–231. doi: 10.1016/j.neuint.2015.09.006 PubMedCrossRefGoogle Scholar
  96. 96.
    Nakane H, Ono K (1989) Differential inhibition of HIV-reverse transcriptase and various DNA and RNA polymerases by somecatechin derivatives. Nucleic Acids Symp Ser 21:115–116Google Scholar
  97. 97.
    Nakane H, Ono K (1990) Differential inhibitory effects of some catechin derivatives on the activities of human immunodeficiency virus reverse transcriptase and cellular deoxyribonucleic and ribonucleic acid polymerases. Biochemistry 29(11):2841–2845PubMedCrossRefGoogle Scholar
  98. 98.
    Nakayama M, Suzuki K, Toda M, Okubo S, Hara Y, Shimamura T (1993) Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res 21(4):289–299PubMedCrossRefGoogle Scholar
  99. 99.
    Nayak MK, Agrawal AS, Bose S, Naskar S, Bhowmick R, Chakrabarti S, Sarkar S, Chawla-Sarkar M (2014) Antiviral activity of baicalin against influenza virus H1N1-pdm09 is due to modulation of NS1-mediated cellular innate immune responses. J Antimicrob Chemother 69(5):1298–1310. doi: 10.1093/jac/dkt534 PubMedCrossRefGoogle Scholar
  100. 100.
    Nielsen ILF, Chee WS, Poulsen L, Offord-Cavin E, Rasmussen SE, Frederiksen H, Enslen M, Barron D, Horcajada M-N, Williamson G (2006) Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J Nutr 136:404–408PubMedGoogle Scholar
  101. 101.
    Oo A, Hassandarvish P, Chin SP, Lee VS, Bakar SA, Zandi K (2016) In silico study on anti-Chikungunya virus activity of hesperetin. PeerJ 4:e2602. doi: 10.7717/peerj.2602 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Paredes A, Alzuru M, Mendez J, Rodríguez-Ortega M (2003) Anti-Sindbis activity of flavanones hesperetin and naringenin. Biol Pharm Bull 26(1):108–109PubMedCrossRefGoogle Scholar
  103. 103.
    Pasetto S, Pardi V, Murata RM (2014) Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model. PLoS One 9:e115323. doi: 10.1371/journal.pone.0115323 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Patel J, Choubisa B, Dholakiya B (2011) Plant derived compounds having activity against P388 and L1210 leukemia cells. J Chem Sci 1:1–16CrossRefGoogle Scholar
  105. 105.
    Pohjala L, Utt A, Varjak M, Lulla A, Merits A, Ahola T, Tammela P (2011) Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays. PLoS One 6(12):e28923. doi: 10.1371/journal.pone.0028923 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Qian K, Gao AJ, Zhu MY, Shao HX, Jin WJ, Ye JQ, Qin AJ (2014) Genistein inhibits the replication of avian leucosis virus subgroup J in DF-1 cells. Virus Res 192:114–120. doi: 10.1016/j.virusres.2014.08.016 PubMedCrossRefGoogle Scholar
  107. 107.
    Qian S, Fan W, Qian P, Zhang D, Wei Y, Chen H, Li X (2015) Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses 7(4):1613–1626. doi: 10.3390/v7041613 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Rogerio AP, Dora CL, Andrade EL, Chaves JS, Silva LF, Lemos-Senna E, Calixto JB (2010) Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol Res 61:288–297. doi: 10.1016/j.phrs.2009.10.005 PubMedCrossRefGoogle Scholar
  109. 109.
    Samuelsson G (1999) Drugs of natural origin. Swedish Pharmaceutical Press, StockholmGoogle Scholar
  110. 110.
    Sauter D, Schwarz S, Wang K, Zhang R, Sun B, Schwarz W (2014) Genistein as antiviral drug against HIV ion channel. Planta Med 80(8–9):682–687. doi: 10.1055/s-0034-1368583 PubMedGoogle Scholar
  111. 111.
    Scalbert A, Morand C, Manach C, Rémésy C (2002) Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother 56:276–282PubMedCrossRefGoogle Scholar
  112. 112.
    Schwarz S, Sauter D, Wang K, Zhang R, Sun B, Karioti A, Bilia AR, Efferth T, Schwarz W (2014) Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med 80(2–3):177–182. doi: 10.1055/s-0033-1360277 PubMedGoogle Scholar
  113. 113.
    Seo DJ, Jeon SB, Oh H, Lee B-H, Lee S-Y, Oh SH, Jung JY, Choi C (2016) Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus. Food Control 60:25–30. doi: 10.1016/j.foodcont.2015.07.023 CrossRefGoogle Scholar
  114. 114.
    Seyedi SS, Shukri M, Hassandarvish P, Oo A, Muthu SE, Abubakar S, Zandi K (2016) Computational approach towards exploring potential anti-Chikungunya activity of selected flavonoids. Sci Rep 6:24027. doi: 10.1038/srep24027 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Shibata C, Ohno M, Otsuka M, Kishikawa T, Goto K, Muroyama R, Kato N, Yoshikawa T, Takata A, Koike K (2014) The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology 462–463:42–48. doi: 10.1016/j.virol.2014.05.024 PubMedCrossRefGoogle Scholar
  116. 116.
    Sithisarn P, Michaelis M, Schubert-Zsilavecz M, Cinatl J Jr (2013) Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicaleinin H5N1 influenza A virus-infected cells. Antiviral Res 97(1):41–48. doi: 10.1016/j.antiviral.2012.10.004 PubMedCrossRefGoogle Scholar
  117. 117.
    Song J-H, Kwon B-E, Jang H, Kang H, Cho S, Park K, Ko H-J, Kim H (2015) Antiviral activity of chrysin derivatives against Coxsackievirus B3 in vitro and in vivo. Biomol Ther 23:465. doi: 10.4062/biomolther.2015.095 CrossRefGoogle Scholar
  118. 118.
    Song JH, Shim JK, Choi HJ (2011) Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via independent pathway of viral induced reactive oxygen species. Virol J 8:460. doi: 10.1186/1743-422X-8-460 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Song JH, Choi HJ (2011) Silymarin efficacy against influenza A virus replication. Phytomedicine 18(10):832–835. doi: 10.1016/j.phymed.2011.01.026 PubMedCrossRefGoogle Scholar
  120. 120.
    Song JM, Lee KH, Seong BL (2005) Antiviral effect of catechins in green tea on influenza virus. Antiviral Res 68(2):66–74. doi: 10.1016/j.antiviral.2005.06.010 PubMedCrossRefGoogle Scholar
  121. 121.
    Song JM, Park KD, Lee KH, Byun YH, Park JH, Kim SH, Kim JH, Seong BL (2007) Biological evaluation of anti-influenza viral activity of semi-synthetic catechin derivatives. Antiviral Res 76(2):178–185. doi: 10.1016/j.antiviral.2007.07.001 PubMedCrossRefGoogle Scholar
  122. 122.
    Song JM, Seong BL (2007) Tea catechins as a potential alternative anti-infectious agent. Expert Rev Anti Infect Ther 5(3):497–506. doi: 10.1586/14787210.5.3.497 PubMedCrossRefGoogle Scholar
  123. 123.
    Tao J, Hu Q, Yang J, Li R, Li X, Lu C, Chen C, Wang L, Shattock R, Ben K (2007) In vitro anti-HIV and -HSV activity and safety of sodium rutin sulfate as a microbicide candidate. Antiviral Res 75(3):227–233. doi: 10.1016/j.antiviral.2007.03.008 PubMedCrossRefGoogle Scholar
  124. 124.
    Tillekeratne LM, Sherette A, Grossman P, Hupe L, Hupe D, Hudson RA (2001) Simplified catechin-gallate inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 11(20):2763–2767PubMedCrossRefGoogle Scholar
  125. 125.
    Veckenstedt A, Güttner J, Béládi I (1987) Synergistic action of quercetin and murine alpha/beta interferon in the treatment of Mengo virus infection in mice. Antiviral Res 7(3):169–178PubMedCrossRefGoogle Scholar
  126. 126.
    Vela EM, Bowick GC, Herzog NK, Aronson JF (2008) Genistein treatment of cells inhibits arenavirus infection. Antiviral Res 77(2):153–156. doi: 10.1016/j.antiviral.2007.09.005 PubMedCrossRefGoogle Scholar
  127. 127.
    Visintini Jaime MF, Redko F, Muschietti LV, Campos RH, Martino VS, Cavallaro LV (2013) In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virol J 10:245. doi: 10.1186/1743-422X-10-245 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wagoner J, Negash A, Kane OJ, Martinez LE, Nahmias Y, Bourne N, Owen DM, Grove J, Brimacombe C, McKeating JA (2010) Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology 51:1912–1921. doi: 10.1002/hep.23587 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wang C, Wang P, Chen X, Wang W, Jin Y (2015) Saururus chinensis (Lour.) Baill blocks enterovirus 71 infection by hijacking MEK1-ERK signaling pathway. Antiviral Res 119:47–56. doi: 10.1016/j.antiviral.2015.04.009 PubMedCrossRefGoogle Scholar
  130. 130.
    Wang H, Cui Y, Fu Q, Deng B, Li G, Yang J, Wu T, Xie Y (2015) A phospholipid complex to improve the oral bioavailability of flavonoids. Drug Dev Ind Pharm 41:1693–1703. doi: 10.3109/03639045.2014.991402 PubMedCrossRefGoogle Scholar
  131. 131.
    Wang J, Zhang T, Du J, Cui S, Yang F, Jin Q (2014) Anti-enterovirus 71 effects of chrysin and its phosphate ester. PLoS One 9:e89668. doi: 10.1371/journal.pone.0089668 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Weber C, Sliva K, von Rhein C, Kümmerer BM, Schnierle BS (2015) The green tea catechin, epigallocatechin gallate inhibits Chikungunya virus infection. Antiviral Res 113:1–3. doi: 10.1016/j.antiviral.2014.11.001 PubMedCrossRefGoogle Scholar
  133. 133.
    Williamson G, Clifford MN (2010) Colonic metabolites of berry polyphenols: the missing link to biological activity? Br J Nutr 104:S48–S66. doi: 10.1017/S0007114510003946 PubMedCrossRefGoogle Scholar
  134. 134.
    Williamson MP, McCormick TG, Nance CL, Shearer WT (2006) Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy. J Allergy Clin Immunol 118(6):1369–1374. doi: 10.1016/j.jaci.2006.08.016 PubMedCrossRefGoogle Scholar
  135. 135.
    Wu H, Myszka DG, Tendian SW, Brouillette CG, Sweet RW, Chaiken IM, Hendrickson WA (1996) Kinetic and structural analysis of mutant CD4 receptors that are defective in HIV gp120binding. Proc Natl Acad Sci USA 93(26):15030–15035PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Wu W, Li R, Li X, He J, Jiang S, Liu S, Yang J (2015) Quercetin as an antiviral agent inhibits Influenza A virus (IAV) Entry. Viruses. doi: 10.3390/v8010006 (pii: E6) Google Scholar
  137. 137.
    Xia EQ, Deng GF, Guo YJ, Li H (2010) Biological activities of polyphenols from grapes. Int J Mol Sci 11(2):622–646. doi: 10.3390/ijms11020622 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Xiong W, Ma X, Wu Y, Chen Y, Zeng L, Liu J, Sun W, Wang D, Hu Y (2015) Determine the structure of phosphorylated modification of icariin and its antiviral activity against duck hepatitis virus A. BMC Vet Res 11:1. doi: 10.1186/s12917-015-0459-9 CrossRefGoogle Scholar
  139. 139.
    Xu G, Dou J, Zhang L, Guo Q, Zhou C (2010) Inhibitory effects of baicalein on the influenza virus in vivo is determined by baicalin in the serum. Biol Pharm Bull 33(2):238–243PubMedCrossRefGoogle Scholar
  140. 140.
    Xu J, Wang J, Deng F, Hu Z, Wang H (2008) Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro. Antiviral Res 78(3):242–249. doi: 10.1016/j.antiviral.2007.11.011 PubMedCrossRefGoogle Scholar
  141. 141.
    Xu J-J, Liu Z, Tang W, Wang G-C, Chung HY, Liu Q-Y, Zhuang L, Li M-M, Li Y-L (2015) Tangeretin from citrus reticulate inhibits respiratory syncytial virus replication and associated inflammation in vivo. J Agric Food Chem 63:9520–9527. doi: 10.1021/acs.jafc.5b03482 PubMedCrossRefGoogle Scholar
  142. 142.
    Xu L, Su W, Jin J, Chen J, Li X, Zhang X, Sun M, Sun S, Fan P, An D, Zhang H, Zhang X, Kong W, Ma T, Jiang C (2014) Identification of luteolin as enterovirus 71 and coxsackievirus A16 inhibitors through reporter viruses and cell viability-based screening. Viruses 6(7):2778–2795. doi: 10.3390/v6072778 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Yamaguchi K, Honda M, Ikigai H, Hara Y, Shimamura T (2002) Inhibitory effects of (−)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Res 53(1):19–34PubMedCrossRefGoogle Scholar
  144. 144.
    Yang L, Lin J, Zhou B, Liu Y, Zhu B (2016) Activity of compounds from Taxillus sutchuenensis as inhibitors of HCV NS3 serine protease. Nat Prod Res 13:1–5. doi: 10.1080/14786419.2016.1190719 Google Scholar
  145. 145.
    Yarmolinsky L, Huleihel M, Zaccai M, Ben-Shabat S (2012) Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia 83(2):362–367. doi: 10.1016/j.fitote.2011.11.014 PubMedCrossRefGoogle Scholar
  146. 146.
    Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, Zhang H, Luo H, Zhu L, Jiang P, Chen L, Shen Y, Luo M, Zuo G, Hu J, Duan D, Nie Y, Shi X, Wang W, Han Y, Li T, Liu Y, Ding M, Deng H, Xu X (2004) Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 78(20):11334–11339. doi: 10.1128/JVI.78.20.11334-11339.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Yu MS, Lee J, Lee JM, Kim Y, Chin YW, Jee JG, Keum YS, Jeong YJ (2012) Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 22(12):4049–4054. doi: 10.1016/j.bmcl.2012.04.081 PubMedCrossRefGoogle Scholar
  148. 148.
    Zandi K, Lim TH, Rahim NA, Shu MH, Teoh BT, Sam SS, Danlami MB, Tan KK, Abubakar S (2013) Extract of Scutellaria baicalensis inhibits dengue virus replication. BMC Complement Altern Med 13:91. doi: 10.1186/1472-6882-13-91 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S (2011) Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J 8:560. doi: 10.1186/1743-422X-8-560 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S (2012) Novel antiviral activity of baicalein against dengue virus. BMC Complement Altern Med 12:214. doi: 10.1186/1472-6882-12-214 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Zhai Y, Guo S, Liu C, Yang C, Dou J, Li L, Zhai G (2013) Preparation and in vitro evaluation of apigenin-loaded polymeric micelles. Colloids Surf A 429:24–30. doi: 10.1016/j.colsurfa.2013.03.051 CrossRefGoogle Scholar
  152. 152.
    Zhang T, Wu Z, Du J, Hu Y, Liu L, Yang F, Jin Q (2012) Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics. PLoS One 7:e30259. doi: 10.1371/journal.pone.0030259 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Zhang W, Qiao H, Lv Y, Wang J, Chen X, Hou Y, Tan R, Li E (2014) Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PLoS One 9(10):e110429. doi: 10.1371/journal.pone.0110429 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Zhang Y, Wang R, Wu J, Shen Q (2012) Characterization and evaluation of self-microemulsifying sustained-release pellet formulation of puerarin for oral delivery. Int J Pharm 427:337–344. doi: 10.1016/j.ijpharm.2012.02.013 PubMedCrossRefGoogle Scholar
  155. 155.
    Zhong L, Hu J, Shu W, Gao B, Xiong S (2015) Epigallocatechin-3-gallate opposes HBV-induced incomplete autophagy by enhancing lysosomal acidification, which is unfavorable for HBV replication. Cell Death Dis 6:e1770. doi: 10.1038/cddis.2015.136 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L (2014) Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci 5:534. doi: 10.3389/fpls.2014.00534 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Hovakim Zakaryan
    • 1
    Email author
  • Erik Arabyan
    • 1
  • Adrian Oo
    • 2
  • Keivan Zandi
    • 2
    • 3
  1. 1.Group of Antiviral Defense MechanismsInstitute of Molecular Biology of NAS RAYerevanArmenia
  2. 2.Department of Medical Microbiology, Faculty of Medicine, Tropical Infectious Disease Research and Education Center (TIDREC)University of MalayaKuala LumpurMalaysia
  3. 3.Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of MedicineEmory UniversityAtlantaUSA

Personalised recommendations