Advertisement

Archives of Virology

, Volume 162, Issue 9, pp 2565–2577 | Cite as

Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir

  • Chiara Chiozzini
  • Claudia Arenaccio
  • Eleonora Olivetta
  • Simona Anticoli
  • Francesco Manfredi
  • Flavia Ferrantelli
  • Gabriella d’Ettorre
  • Ivan Schietroma
  • Mauro Andreotti
  • Maurizio FedericoEmail author
Original Article

Abstract

Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4+ T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4+ T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4+ T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4+ T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4+ T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4+ T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.

Keywords

GW4869 Iodixanol Virological Synapse cART Patient GPR37 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Massimo Sanchez, Istituto Superiore di Sanità, for the support in FACS analysis, and Pietro Arciero and Stefania de Menna, Istituto Superiore di Sanità, for their excellent technical support. Both AZT and anti-Env gp120 mAb were obtained from the NIH AIDS Research and Reference Program.

Compliance with ethical standards

This work was supported by a Grant from “Ricerca Finalizzata” project RF-2010-2308334 from the Ministry of Health, Italy. CC, CA, EO, SA, FM, FF, G d’E, IS, MA, and MF declare that they have no conflict of interest. This article does not contain studies with animals. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytophathic infection to CD4+ T cells. Science 257:383–386CrossRefPubMedGoogle Scholar
  2. 2.
    Geijtenbeek TBH, Kwon DS, Torensma R et al (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597CrossRefPubMedGoogle Scholar
  3. 3.
    McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300:1295–1297CrossRefPubMedGoogle Scholar
  4. 4.
    Piguet V, Sattentau Q (2004) Dangerous liaisons at the virological synapse. J Clin Investig 114:605–610CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Laguette N, Sobhian B, Casartelli N et al (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ryoo J, Choi J, Oh C et al (2014) The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 20:936–941CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Garcia E, Pion M, Pelchen-Matthews A et al (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6:488–501CrossRefPubMedGoogle Scholar
  8. 8.
    Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PloS Pathog 4:e1000134CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sagar M, Akiyama H, Etemad B, Ramirez N, Freitas I, Gummuluru S (2012) Transmembrane domain membrane proximal external region but not surface unit-directed broadly neutralizing HIV-1 antibodies can restrict dendritic cell-mediated HIV-1 trans-infection. J Infect Dis 205:1248–1257CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sanders RW, de Jong EC, Baldwin CE, Schuitemaker JHN, Kapsenberg ML, Berkhout B (2002) Differential transmission of human immunodeficiency virus type I by distinct subsets of effector dendritic cells. J Virol 76:7812–7821CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Puryear WB, Akiyama H, Geer SD, Ramirez NP, Yu XW, Reinhard BM, Gummuluru S (2013) Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on siglec-1/CD169. PloS Pathog 9(4):e1003291CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Izquierdo-Useros N, Lorizate M, Puertas MC et al (2012) Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PloS Biol 10(12):e1001448CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Izquierdo-Useros N, Lorizate M, Contreras FX et al (2012) Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol 10(4):e1001315CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Puryear WB, Yu XW, Ramirez NP, Reinhard BM, Gummuluru S (2012) HIV-1 incorporation of host-cell-derived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proc Natl Acad Sci USA 109:7475–7480CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schorey JS, Cheng Y, Singh PP, Smith VL (2015) Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Rep 16:24–43CrossRefPubMedGoogle Scholar
  16. 16.
    Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteom 73:1907–1920CrossRefGoogle Scholar
  17. 17.
    Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hubert A, Barbeau B, Subra C, Bissonnette L, Gilbert C (2015) Role and future applications of extracellular vesicles in HIV-1 pathogenesis. Future Virol 10:357–370CrossRefGoogle Scholar
  19. 19.
    Madison MN, Okeoma CM (2015) Exosomes: implications in HIV-1 pathogenesis. Viruses 7:4093–4118CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Teow SY, Nordin AC, Khoo ASB (2016) Exosomes in human immunodeficiency virus type I pathogenesis: threat or opportunity? Adv Virol. doi: 10.1155/2016/9852494 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee JH, Wittki S, Brau T et al (2013) HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol Cell 49:668–679CrossRefPubMedGoogle Scholar
  22. 22.
    Gooz M (2010) ADAM-17: the enzyme that does it all. Crit Rev Biochem Mol Biol 45:146–169CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Arenaccio C, Chiozzini C, Columba-Cabezas S et al (2014) Exosomes from human immunodeficiency virus type 1 (HIV-1)-infected cells license quiescent CD4(+) T lymphocytes to replicate HIV-1 through a Nef- and ADAM17-dependent mechanism. J Virol 88:11529–11539CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Arenaccio C, Chiozzini C, Columba-Cabezas S, Manfredi F, Federico M (2014) Cell activation and HIV-1 replication in unstimulated CD4+ T lymphocytes ingesting exosomes from cells expressing defective HIV-1. Retrovirology 11:46. doi: 10.1186/1742-4690-11-46 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Arenaccio C, Anticoli S, Manfredi F, Chiozzini C, Olivetta E, Federico M (2015) Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1. Retrovirology 12:87. doi: 10.1186/s12977-015-0216-y CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Izquierdo-Useros N, Naranjo-Gomez M, Archer J et al (2009) Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113:2732–2741CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Adachi A, Gendelman HE, Koenig S et al (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59:284–2891PubMedPubMedCentralGoogle Scholar
  28. 28.
    Federico M, Titti F, Butto S et al (1989) Biologic and molecular characterization of producer and non-producer clones from HUT-78 cells infected with a patient HIV isolate. AIDS Res Hum Retrovir 5:385–396CrossRefPubMedGoogle Scholar
  29. 29.
    Sparacio S, Pfeiffer T, Schaal H, Bosch V (2001) Generation of a flexible cell line with regulatable, high-level expression of HIV Gag/Pol particles capable of packaging HIV-derived vectors. Mol Ther 3:602–612CrossRefPubMedGoogle Scholar
  30. 30.
    Federico M, Percario Z, Olivetta E et al (2001) HIV-1 Nef activates STAT1 in human monocytes/macrophages through the release of soluble factors. Blood 8:2752–2761CrossRefGoogle Scholar
  31. 31.
    Dettenhofer M, Yu XF (1999) Highly purified human immunodeficiency virus type 1 reveals a virtual absence of vif in virions. J Virol 73:1460–1467PubMedPubMedCentralGoogle Scholar
  32. 32.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006 Chapter 3, Unit 3.22Google Scholar
  33. 33.
    Wu L, KewalRamani VN (2006) Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol 6:859–868CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190:1079–1091CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kogure T, Lin WL, Yan IK, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54:1237–1248CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, Ochiya T (2012) Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem 287:1397–1405CrossRefPubMedGoogle Scholar
  38. 38.
    Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247CrossRefPubMedGoogle Scholar
  39. 39.
    Yuyama K, Sun H, Mitsutake S, Igarashi Y (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem 287:10977–10989CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Liu YJ, Kanzler H, Soumeli V, Gilliet M (2001) Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol 2:585–589CrossRefPubMedGoogle Scholar
  41. 41.
    Sanchez G, Xu XY, Chermann JC, Hirsch I (1997) Accumulation of defective viral genomes in peripheral blood mononuclear cells of human immunodeficiency virus type 1-infected individuals. J Virol 71:2233–2240PubMedPubMedCentralGoogle Scholar
  42. 42.
    Fourati S, Lambert-Niclot S, Soulie C et al (2012) HIV-1 genome is often defective in PBMCs and rectal tissues after long-term HAART as a result of APOBEC3 editing and correlates with the size of reservoirs. J Antimicrob Chemother 67:2323–2326CrossRefPubMedGoogle Scholar
  43. 43.
    Janini M, Rogers M, Birx DR, McCutchan F (2001) Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4(+) T cells. J Virol 75:7973–7986CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: Purification of both vesicles from cell-free supernatants. J Immunol Methods 338:21–30CrossRefPubMedGoogle Scholar
  45. 45.
    Rieu S, Geminard C, Rabesandratana H, Sainte-Marie J, Vidal M (2000) Exosomes released during reticulocyte maturation bind to fibronectin via integrin alpha 4 beta 1. Eur J Biochem 267:583–590CrossRefPubMedGoogle Scholar
  46. 46.
    Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci USA 103:738–743CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sagar D, Foss C, El Baz R, Pomper MG, Khan ZK, Jain P (2012) Mechanisms of dendritic cell trafficking across the blood–brain barrier. J Neuroimmune Pharmacol 7:74–94CrossRefPubMedGoogle Scholar
  48. 48.
    Cohn LB, Silva IT, Oliveira TY et al (2015) HIV-1 integration landscape during latent and active infection. Cell 160:420–432CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Barton K, Winckelmann A, Palmer S (2016) HIV-1 reservoirs during suppressive therapy. Trends Microbiol 24:345–355CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Palmer S, Maldarelli F, Wiegand A et al (2001) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA 105:3879–3884CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Chiara Chiozzini
    • 1
  • Claudia Arenaccio
    • 1
  • Eleonora Olivetta
    • 1
  • Simona Anticoli
    • 1
  • Francesco Manfredi
    • 1
  • Flavia Ferrantelli
    • 1
  • Gabriella d’Ettorre
    • 2
  • Ivan Schietroma
    • 2
  • Mauro Andreotti
    • 1
  • Maurizio Federico
    • 1
    Email author
  1. 1.National Center for Global HealthIstituto Superiore di SanitàRomeItaly
  2. 2.Department of Public Health and Infectious Diseases‘Sapienza’ University of RomeRomeItaly

Personalised recommendations