Advertisement

Archives of Virology

, Volume 162, Issue 8, pp 2403–2407 | Cite as

Highly divergent cyclo-like virus in a great roundleaf bat (Hipposideros armiger) in Vietnam

  • Gábor Kemenesi
  • Kornélia Kurucz
  • Brigitta Zana
  • Vuong Tan Tu
  • Tamás Görföl
  • Péter Estók
  • Fanni Földes
  • Katalin Sztancsik
  • Péter Urbán
  • Enikő Fehér
  • Ferenc Jakab
Brief Report

Abstract

Members of the viral family Circoviridae are increasingly recognized worldwide. Bats seem to be natural reservoirs or dietary-related dispensers of these viruses. Here, we report a distantly related member of the genus Cyclovirus detected in the faeces of a great roundleaf bat (Hipposideros armiger). Interestingly, the novel virus lacks a Circoviridae-specific stem-loop structure, although a Geminiviridae-like nonamer sequence was detected in the large intergenic region. Based on these differences and its phylogenetic position, we propose that our new virus represents a distant and highly divergent member of the genus Cyclovirus. However it is lacking several characteristics of members of the genus, which raises a challenge in its taxonomic classification.

Keywords

Hipposideridae Guano ssDNA CRESS DNA virus Nucleotide composition analysis 

Notes

Acknowledgements

This research was supported by the Hungarian Scientific Research Fund (OTKA) K112440. Research activity of F.J. was supported by TÁMOP (4.2.4.A/2-11-1-2012-0001) – National Excellence Program. K.K. was supported by the Szentágothai Talent Program (awarded by the Szentágothai Research Centre, University of Pécs). G.K. and F.J. were supported by the ÚNKP-16-3-III and ÚNKP-16-4-III – New Excellence Program of the Ministry of Human Capacities. The project has been supported by the European Union, co-financed by the European Social Fund: Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pécs (EFOP-3.6.1.-16-2016-00004). The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary. We gratefully acknowledge the funding provided by the Rufford Foundation.

References

  1. 1.
    Allan GM, McNeilly F, Kennedy S, Daft B, Clarke EG, Ellis JA, Haines DM, Meehan BM, Adair BM (1998) Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest 10:3–10CrossRefPubMedGoogle Scholar
  2. 2.
    Kapoor A, Dubovi EJ, Henriquez-Rivera JA, Lipkin WI (2012) Complete genome sequence of the first canine circovirus. J Virol 86:7018. doi: 10.1128/JVI.00791-12 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tan LV, van Doorn HR, Nghia HDT, Chau TTH, Tu LTP, de Vries M, Canuti M, Deijs M, Jebbink MF, Baker S, Bryant JE, Tham NT, Krong NTTC, Boni MF, Loi TQ, Phuong LT, Verhoeven JTP, Crusat M, Jeeninga RE, Schultsz C, Chau NVV, Hien TT, van der Hoek L, Farrar J, de Jong MD (2013) Identification of a new cyclovirus in cerebrospinal fluid of patients with acute central nervous system infections. mBio 4:e00231-13. doi: 10.1128/mBio.00231-13 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Li L, Shan T, Soji OB, Alam MM, Kunz TH, Zaidi SZ, Delwart E (2011) Possible cross-species transmission of circoviruses and cycloviruses among farm animals. J Gen Virol 92:768–772. doi: 10.1099/vir.0.028704-0 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lima FE, Cibulski SP, Dos Santos HF, Teixeira TF, Varela AP, Roehe PM, Delwart E, Franco AC (2015) Genomic characterization of novel circular ssDNA viruses from insectivorous bats in Southern Brazil. PLoS One 17:e0118070. doi: 10.1371/journal.pone.0118070 CrossRefGoogle Scholar
  6. 6.
    Lima FE, Cibulski SP, Dall Bello AG, Mayer FQ, Witt AA, Roehe PM, d’Azevedo PA (2015) A novel chiropteran circovirus genome recovered from a brazilian insectivorous bat species. Genome Announc 3(6). doi: 10.1128/genomeA.01393-15
  7. 7.
    Ge X, Li J, Peng C, Wu L, Yang X, Wu Y, Zhang Y, Shi Z (2011) Genetic diversity of novel circular ssDNA viruses in bats in China. J Gen Virol 92:2646–2653CrossRefPubMedGoogle Scholar
  8. 8.
    Li L, Victoria JG, Wang C, Jones M, Fellers GM, Kunz TH, Delwart E (2010) Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J Virol 84:6955–6965CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wu Z, Yang L, Ren X, He G, Zhang J, Yang J, Qian Z, Dong J, Sun L, Zhu Y, Du J, Yang F, Zhang S, Jin Q (2016) Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J 10:609–620. doi: 10.1038/ismej.2015.138 CrossRefPubMedGoogle Scholar
  10. 10.
    Male MF, Kraberger S, Stainton D, Kami V, Varsani A (2016) Cycloviruses, gemycircularviruses and other novel replication-associated protein encoding circular viruses in Pacific flying fox (Pteropus tonganus) faeces. Infect Genet Evol 39:279–292. doi: 10.1016/j.meegid.2016.02.009 CrossRefPubMedGoogle Scholar
  11. 11.
    Li LL, Kapoor A, Slikas B, Bamidele OS, Wang CL, Shaukat S, Masroor MA, Wilson ML, Ndjango JBN, Peeters M, Gross-Camp ND, Muller MN, Hahn BH, Wolfe ND, Triki H, Bartkus J, Zaidi SZ, Delwart E (2010) Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol 84:1674–1682CrossRefPubMedGoogle Scholar
  12. 12.
    Smits SL, Zijlstra EE, Hellemond JJ, Schapendonk CME, Bodewes R, Schürch AC, Haagmans BL, Osterhaus ADME (2013) Novel cyclovirus in human cerebrospinal fluid, Malawi, 2010–2011. Emerg Infect Dis 19:1511–1513CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Sato G, Kawashima T, Kiuchi M, Tohya Y (2015) Novel cyclovirus detected in the intestinal contents of Taiwan squirrels (Callosciurus erythraeus thaiwanensis). Virus Genes 51:148–151. doi: 10.1007/s11262-015-1217-6 CrossRefPubMedGoogle Scholar
  14. 14.
    Rosario K, Duffy S, Breitbart M (2012) A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol 157:1851–1871CrossRefPubMedGoogle Scholar
  15. 15.
    Kruskop SV (2013) Bats of Vietnam—checklist and an identification manual. Joint Russian-Vietnamese Science and Technological Tropical Centre, MoscowGoogle Scholar
  16. 16.
    Kemenesi G, Dallos B, Görföl T, Boldogh S, Estók P, Kurucz K, Kutas A, Földes F, Oldal M, Németh V, Martella V, Bányai K, Jakab F (2014) Molecular survey of RNA viruses in Hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses. Vector Borne Zoonotic Dis 14:846–885. doi: 10.1089/vbz.2014.1637 CrossRefPubMedGoogle Scholar
  17. 17.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mihalov-Kovács E, Gellért Á, Marton S, Farkas SL, Fehér E, Oldal M, Jakab F, Martella V, Bányai K (2015) Candidate new rotavirus species in sheltered dogs, Hungary. Emerg Infect Dis 21:660–663. doi: 10.3201/eid2104.141370 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Charif D, Lobry JR (2007) SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. Structural approaches to sequence evolution: molecules, networks, populations. http://cran.R-project.org/package=seqinr
  20. 20.
    R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  21. 21.
    Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9(9):e108277. doi: 10.1371/journal.pone.0108277 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shackelton LA, Parrish CR, Holmes EC (2006) Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J Mol Evol 62:551–563CrossRefPubMedGoogle Scholar
  23. 23.
    Kapoor A, Simmonds P, Lipkin WI, Zaidi S, Delwart E (2010) Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses. J Virol 84:10322–10328. doi: 10.1128/JVI.00601-10 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Weterings R, Wardenaar J, Dunn S, Umponstira C (2015) Dietary analysis of five insectivorous bat species from Kamphaeng Phet, Thailand. Raffles Bull Zool 63:91–96Google Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Gábor Kemenesi
    • 1
    • 2
  • Kornélia Kurucz
    • 1
  • Brigitta Zana
    • 1
    • 2
  • Vuong Tan Tu
    • 3
  • Tamás Görföl
    • 4
  • Péter Estók
    • 5
  • Fanni Földes
    • 1
    • 2
  • Katalin Sztancsik
    • 1
    • 2
  • Péter Urbán
    • 6
    • 7
  • Enikő Fehér
    • 8
  • Ferenc Jakab
    • 1
    • 2
  1. 1.Virological Research Group, Szentágothai Research CentreUniversity of PécsPécsHungary
  2. 2.Institute of Biology, Faculty of SciencesUniversity of PécsPécsHungary
  3. 3.Institute of Ecology and Biological ResourcesVietnam Academy of Science and TechnologyHanoiVietnam
  4. 4.Department of ZoologyHungarian Natural History MuseumBudapestHungary
  5. 5.Department of ZoologyEszterházy Károly UniversityEgerHungary
  6. 6.Microbial Biotechnology Research Group, Szentágothai Reasearch CentreUniversity of PécsPécsHungary
  7. 7.Department of General and Environmental Microbiology, Faculty of SciencesUniversity of PécsPécsHungary
  8. 8.Institute for Veterinary Medical Research Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations