Skip to main content

Advertisement

Log in

Exposure to cold impairs interferon-induced antiviral defense

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

It is commonly believed that exposure to low temperature increases susceptibility to viral infection in the human respiratory tract, but a molecular mechanism supporting this belief has yet to be discovered. In this study, we investigated the effect of low temperature on viral infection and innate defense in cell lines from the human respiratory tract and found that interferon-induced antiviral responses were impaired at low temperatures. Cells maintained at 25°C and 33°C expressed lower levels of myxovirus resistance protein 1 (MxA) and 2′5′-oligoadenylate synthetase 1 (OAS1) mRNAs when compared to cells maintained at 37°C after infection by seasonal influenza viruses. Exogenous β-interferon treatment reduced the viral replication at 37°C, but not at 25°C. Our results suggest that the impairment of interferon-induced antiviral responses by low temperature is one of several mechanisms that could explain an increase in host susceptibility to respiratory viruses after exposure to cold temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scholtissek C, Rott R (1969) Effect of temperature on the multiplication of an Influenza virus. J Gen Virol 5:283–290

    Article  CAS  PubMed  Google Scholar 

  2. Massin P, Kuntz-Simon G, Barbezange C, Deblanc C, Oger A, Marquet-Blouin E, Bougeard S, van der Werf S, Jestin V (2010) Temperature sensitivity on growth and/or replication of H1N1, H1N2 and H3N2 influenza A viruses isolated from pigs and birds in mammalian cells. Vet Microbiol 142:232–241

    Article  CAS  PubMed  Google Scholar 

  3. Murakami Y, Nerome K, Yoshioka Y, Mizuno S, Oya A (1988) Difference in growth behavior of human, swine, equine, and avian influenza viruses at a high temperature. Arch Virol 100:231–244

    Article  CAS  PubMed  Google Scholar 

  4. Hatta M, Hatta Y, Kim JH, Watanabe S, Shinya K, Nguyen T, Lien PS, Le QM, Kawaoka Y (2007) Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog 3:1374–1379

    Article  CAS  PubMed  Google Scholar 

  5. Zhu W, Zou X, Zhou J, Tang J, Shu Y (2015) Residues 41V and/or 210D in the NP protein enhance polymerase activities and potential replication of novel influenza (H7N9) viruses at low temperature. Virol J 12:71

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hayashi T, Wills S, Bussey KA, Takimoto T (2015) Identification of influenza a virus PB2 residues involved in enhanced polymerase activity and virus growth in mammalian cells at low temperatures. J Virol 89:8042–8049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maassab HF (1967) Adaptation and growth characteristics of influenza virus at 25 degrees c. Nature 213:612–614

    Article  CAS  PubMed  Google Scholar 

  8. Foxman EF, Storer JA, Fitzgerald ME, Wasik BR, Hou L, Zhao H, Turner PE, Pyle AM, Iwasaki A (2015) Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc Natl Acad Sci USA 112:827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Helman CG (1978) “Feed a cold, starve a fever”—folk models of infection in an English suburban community, and their relation to medical treatment. Cult Med Psychiatry 2:107–137

    Article  CAS  PubMed  Google Scholar 

  10. Douglas RC Jr, Couch RB, Lindgren KM (1967) Cold doesn’t affect the “common cold” in study of rhinovirus infections. JAMA 199:29–30

    Article  PubMed  Google Scholar 

  11. Dowling HF, Jackson GG, Spiesman IG, Inouye T (1958) Transmission of the common cold to volunteers under controlled conditions. III. The effect of chilling of the subjects upon susceptibility. Am J Hyg 68:59–65

    CAS  PubMed  Google Scholar 

  12. Mudd S, Grant SB (1919) Reactions to chilling of the body surface: experimental study of a possible mechanism for the excitation of infections of the pharynx and tonsils. J Med Res 40:53–101

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson C, Eccles R (2005) Acute cooling of the feet and the onset of common cold symptoms. Fam Pract 22:608–613

    Article  PubMed  Google Scholar 

  14. Shek LP, Lee BW (2003) Epidemiology and seasonality of respiratory tract virus infections in the tropics. Paediatr Respir Rev 4:105–111

    Article  PubMed  Google Scholar 

  15. Lofgren E, Fefferman NH, Naumov YN, Gorski J, Naumova EN (2007) Influenza seasonality: underlying causes and modeling theories. J Virol 81:5429–5436

    Article  CAS  PubMed  Google Scholar 

  16. Lowen AC, Mubareka S, Steel J, Palese P (2007) Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 3:1470–1476

    Article  CAS  PubMed  Google Scholar 

  17. Herlocher ML, Clavo AC, Maassab HF (1996) Sequence comparisons of A/AA/6/60 influenza viruses: mutations which may contribute to attenuation. Virus Res 42:11–25

    Article  CAS  PubMed  Google Scholar 

  18. Jin H, Lu B, Zhou H, Ma C, Zhao J, Yang CF, Kemble G, Greenberg H (2003) Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (FluMist) derived from cold-adapted A/Ann Arbor/6/60. Virology 306:18–24

    Article  CAS  PubMed  Google Scholar 

  19. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA 97:6108–6113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497

    Article  Google Scholar 

  21. Holzinger D, Jorns C, Stertz S, Boisson-Dupuis S, Thimme R, Weidmann M, Casanova JL, Haller O, Kochs G (2007) Induction of MxA gene expression by influenza A virus requires type I or type III interferon signaling. J Virol 81:7776–7785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34:263–264

    Article  CAS  PubMed  Google Scholar 

  23. Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K, Yoshida S, Ono M, Kuwano M, Nakamura Y, Tokino T (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15:2145–2150

    Article  CAS  PubMed  Google Scholar 

  24. Emeny JM, Morgan MJ (1979) Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production. J Gen Virol 43:247–252

    Article  CAS  PubMed  Google Scholar 

  25. Osada N, Kohara A, Yamaji T, Hirayama N, Kasai F, Sekizuka T, Kuroda M, Hanada K (2014) The genome landscape of the african green monkey kidney-derived Vero cell line. DNA Res 21:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wathelet MG, Berr PM, Huez GA (1992) Regulation of gene expression by cytokines and virus in human cells lacking the type-I interferon locus. Eur J Biochem 206:901–910

    Article  CAS  PubMed  Google Scholar 

  27. Came PE, Schafer TW, Silver GH (1976) Sensitivity of rhinoviruses to human leukocyte and fibroblast interferons. J Infect Dis 133(Suppl):A136–A139

    Article  PubMed  Google Scholar 

  28. Sperber SJ, Hayden FG (1989) Comparative susceptibility of respiratory viruses to recombinant interferons-alpha 2b and -beta. J Interferon Res 9:285–293

    Article  CAS  PubMed  Google Scholar 

  29. Hale BG, Randall RE, Ortin J, Jackson D (2008) The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89:2359–2376

    Article  CAS  PubMed  Google Scholar 

  30. Makinen TM, Juvonen R, Jokelainen J, Harju TH, Peitso A, Bloigu A, Silvennoinen-Kassinen S, Leinonen M, Hassi J (2009) Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. Respir Med 103:456–462

    Article  PubMed  Google Scholar 

  31. Tellier R (2006) Review of aerosol transmission of influenza A virus. Emerg Infect Dis 12:1657–1662

    Article  PubMed  PubMed Central  Google Scholar 

  32. Won WD, Ross HC, Deig EF (1976) Influence of cold or hyperbaric helium-oxygen environments on mouse response to a respiratory viral infection. Aviat Space Environ Med 47:704–707

    CAS  PubMed  Google Scholar 

  33. Shephard RJ, Shek PN (1998) Cold exposure and immune function. Can J Physiol Pharmacol 76:828–836

    Article  CAS  PubMed  Google Scholar 

  34. Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8:559–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang ZL (2010) Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res 59:791–808

    Article  CAS  PubMed  Google Scholar 

  36. Reikine S, Nguyen JB, Modis Y (2014) Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol 5:342

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sperber SJ, Levine PA, Sorrentino JV, Riker DK, Hayden FG (1989) Ineffectiveness of recombinant interferon-beta serine nasal drops for prophylaxis of natural colds. J Infect Dis 160:700–705

    Article  CAS  PubMed  Google Scholar 

  38. Hayden FG, Albrecht JK, Kaiser DL, Gwaltney JM Jr (1986) Prevention of natural colds by contact prophylaxis with intranasal alpha 2-interferon. N Engl J Med 314:71–75

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. B. and O. S. are supported by the research assistant program of the Faculty of Medicine Siriraj Hospital, Mahidol University. This work was supported by the Thailand Research Fund (RTA5780009). The pHw2000 plasmid was kindly provided by R. G. Webster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasert Auewarakul.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonarkart, C., Suptawiwat, O., Sakorn, K. et al. Exposure to cold impairs interferon-induced antiviral defense. Arch Virol 162, 2231–2237 (2017). https://doi.org/10.1007/s00705-017-3334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3334-0

Keywords

Navigation