Archives of Virology

, Volume 162, Issue 7, pp 2149–2152 | Cite as

Complete genome sequences of cowpea polerovirus 1 and cowpea polerovirus 2 infecting cowpea plants in Burkina Faso

  • Essowè Palanga
  • Darren P. Martin
  • Serge Galzi
  • Jean Zabré
  • Zakaria Bouda
  • James Bouma Neya
  • Mahamadou Sawadogo
  • Oumar Traore
  • Michel Peterschmitt
  • Philippe Roumagnac
  • Denis Filloux
Annotated Sequence Record

Abstract

The full-length genome sequences of two novel poleroviruses found infecting cowpea plants, cowpea polerovirus 1 (CPPV1) and cowpea polerovirus 2 (CPPV2), were determined using overlapping RT-PCR and RACE-PCR. Whereas the 5845-nt CPPV1 genome was most similar to chickpea chlorotic stunt virus (73% identity), the 5945-nt CPPV2 genome was most similar to phasey bean mild yellow virus (86% identity). The CPPV1 and CPPV2 genomes both have a typical polerovirus genome organization. Phylogenetic analysis of the inferred P1-P2 and P3 amino acid sequences confirmed that CPPV1 and CPPV2 are indeed poleroviruses. Four apparently unique recombination events were detected within a dataset of 12 full polerovirus genome sequences, including two events in the CPPV2 genome. Based on the current species demarcation criteria for the family Luteoviridae, we tentatively propose that CPPV1 and CPPV2 should be considered members of novel polerovirus species.

Supplementary material

705_2017_3327_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 23 kb)

References

  1. 1.
    Chen S, Jiang G, Wu J, Liu Y, Qian Y, Zhou X (2016) Characterization of a novel polerovirus infecting maize in China. Viruses 8(120):1–17Google Scholar
  2. 2.
    Domier LL, D’Arcy CJ (2010) Luteoviruses. In: Mahy BWJ, Van Regenmortel MHV (eds) Desk encyclopedia of plant and fungal virology. Academic, Oxford, pp 197–204Google Scholar
  3. 3.
    Domier LL (2012) Family Luteoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: ninth report of the International Committee on the Taxonomy of Viruses. Elsevier Academic Press, Amsterdam, pp 1045–1053Google Scholar
  4. 4.
    Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  5. 5.
    Knierim D, Tsai WS, Deng TC, Green SK, Kenyon L (2013) Full-length genome sequences of four polerovirus isolates infecting cucurbits in Taiwan determined from total RNA extracted from field samples. Plant Pathol 62:633–641CrossRefGoogle Scholar
  6. 6.
    Knierim D, Maiss E, Menzel W, Winter S, Kenyon L (2015) Characterization of the complete genome of a novel Polerovirus infecting Sauropus androgynus in Thailand. J Phytopathol 163:695–702CrossRefGoogle Scholar
  7. 7.
    Lotos L, Maliogka VI, Katis NI (2016) New poleroviruses associated with yellowing symptoms in different vegetable crops in Greece. Arch Virol 161:431–436CrossRefPubMedGoogle Scholar
  8. 8.
    Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evolution 1(1):1–5CrossRefGoogle Scholar
  9. 9.
    Pagan I, Holmes EC (2010) Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. J Virol 84(12):6177–6187CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pagan I, Holmes EC (2010) Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. J Virol 84:6177–6187CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Palanga E, Filloux D, Martin DP, Fernandez E, Gargani D, Ferdinand R, Zabre J, Bouda Z, Neya JB, Sawadogo M, Traore O, Peterschmitt M, Roumagnac P (2016) Metagenomic-based screening and molecular characterization of cowpea-infecting viruses in Burkina Faso. PLoS One 11(10):e0165188CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Smirnova E, Firth AE, Miller WA, Scheidecker D, Brault V, Reinbold C, Rakotondrafara AM, Chung BY-W, Ziegler-Graff V (2015) Discovery of a small non-AUG-initiated ORF in poleroviruses and luteoviruses that is required for long-distance movement. PLoS Pathog 11(5):e1004868CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stevens M, Freeman B, Liu HY, Herrbach E, Lemaire O (2005) Beet poleroviruses: close friends or distant relatives? Mol Plant Pathol 6:1–9CrossRefPubMedGoogle Scholar
  14. 14.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Theis C, Reeder J, Giegerich R (2008) KNOTINFRAME: prediction of −1 ribosomal frameshift events. Nucleic Acids Res 36:6013–6020CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Essowè Palanga
    • 1
    • 2
    • 3
    • 4
  • Darren P. Martin
    • 5
  • Serge Galzi
    • 3
  • Jean Zabré
    • 2
    • 4
  • Zakaria Bouda
    • 2
    • 4
  • James Bouma Neya
    • 2
    • 4
  • Mahamadou Sawadogo
    • 2
  • Oumar Traore
    • 2
    • 4
  • Michel Peterschmitt
    • 3
  • Philippe Roumagnac
    • 3
  • Denis Filloux
    • 3
  1. 1.Laboratoire Biosciences, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre (UFR-SVT)Université Ouaga I Pr Joseph Ki-ZerboOuagadougouBurkina Faso
  2. 2.Laboratoire de Virologie et de Biotechnologies Végétales, INERAOuagadougouBurkina Faso
  3. 3.CIRAD-INRA-SupAgro, UMR BGPIMontpellierFrance
  4. 4.LMI Patho-BiosOuagadougouBurkina Faso
  5. 5.Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownObservatorySouth Africa

Personalised recommendations