Archives of Virology

, Volume 162, Issue 2, pp 425–437 | Cite as

The molecular epidemiological study of bovine leukemia virus infection in Myanmar cattle

  • Meripet Polat
  • Hla Hla Moe
  • Takeshi Shimogiri
  • Kyaw Kyaw Moe
  • Shin-nosuke Takeshima
  • Yoko Aida
Original Article

Abstract

Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and affects both health status and productivity. However, no studies have examined the distribution of BLV in Myanmar, and the genetic characteristics of Myanmar BLV strains are unknown. Therefore, the aim of this study was to detect BLV infection in Myanmar and examine genetic variability. Blood samples were obtained from 66 cattle from different farms in four townships of the Nay Pyi Taw Union Territory of central Myanmar. BLV provirus was detected by nested PCR and real-time PCR targeting BLV long terminal repeats. Results were confirmed by nested PCR targeting the BLV env-gp51 gene and real-time PCR targeting the BLV tax gene. Out of 66 samples, six (9.1 %) were positive for BLV provirus. A phylogenetic tree, constructed using five distinct partial and complete env-gp51 sequences from BLV strains isolated from three different townships, indicated that Myanmar strains were genotype-10. A phylogenetic tree constructed from whole genome sequences obtained by sequencing cloned, overlapping PCR products from two Myanmar strains confirmed the existence of genotype-10 in Myanmar. Comparative analysis of complete genome sequences identified genotype-10-specific amino acid substitutions in both structural and non-structural genes, thereby distinguishing genotype-10 strains from other known genotypes. This study provides information regarding BLV infection levels in Myanmar and confirms that genotype-10 is circulating in Myanmar.

Keywords

Nest Polymerase Chain Reaction Bovine Leukemia Virus Epitope Region Bovine Leukemia Virus Infection Bovine Leukemia Virus Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank LBVD members and farm owners of Lewe, Pyinmana and Shwe Myo Livestock Zone for assistance with sampling the farms in Myanmar. We are grateful to the Support Unit at the Bio-material Analysis, RIKEN BSI Research Resources Center, for help with sequence analysis. This work was supported by Grants-in-Aid for Scientific Research A (No: 18255013) from the Japan Society for the Promotion of Science, and by a Grant from Integration Research for Agriculture and Interdisciplinary Fields in Japan (No.: 14538311).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Animal handling and research ethics

All animals were handled by veterinarians from the University of Veterinary Science in Yezin Myanmar in strict accordance with good animal practice following the guidelines of the University of Veterinary Science. This experiment is approved by the Committee on the Ethics of Animals for Research at the Faculty of Agriculture, Kagoshima University (Certificate No: H28 NOU 005).

Supplementary material

705_2016_3118_MOESM1_ESM.doc (66 kb)
Supplementary material 1 (DOC 66 kb)

References

  1. 1.
    Willems L, Burny A, Collete D, Dangoisse O, Dequiedt F, Gatot JS, Kerkhofs P, Lefebvre L, Merezak C, Peremans T, Portetelle D, Twizere JC, Kettmann R (2000) Genetic determinants of bovine leukemia virus pathogenesis. AIDS Res Hum Retroviruses 16:1787–1795CrossRefPubMedGoogle Scholar
  2. 2.
    Aida Y, Murakami H, Takahashi M, Takeshima SN (2013) Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol 4:328CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gillet N, Florins A, Boxus M, Burteau C, Nigro A, Vandermeers F, Balon H, Bouzar AB, Defoiche J, Burny A, Reichert M, Kettmann R, Willems L (2007) Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 4:18CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    OIE (2009) World Animal Health information database-version: 1.4. World organisation for animal Health, ParisGoogle Scholar
  5. 5.
    Qualley DF, Boleratz BL (2014) Expression, purification, and characterization of full-length bovine leukemia virus Gag protein from bacterial culture. Protein Expr Purif 93:32–37CrossRefPubMedGoogle Scholar
  6. 6.
    Willems L, Heremans H, Chen G, Portetelle D, Billiau A, Burny A, Kettmann R (1990) Cooperation between bovine leukaemia virus transactivator protein and Ha-ras oncogene product in cellular transformation. EMBO J 9:1577–1581PubMedPubMedCentralGoogle Scholar
  7. 7.
    Felber BK, Derse D, Athanassopoulos A, Campbell M, Pavlakis GN (1989) Cross-activation of the Rex proteins of HTLV-I and BLV and of the Rev protein of HIV-1 and nonreciprocal interactions with their RNA responsive elements. New Biol 1:318–328PubMedGoogle Scholar
  8. 8.
    Willems L, Kerkhofs P, Dequiedt F, Portetelle D, Mammerickx M, Burny A, Kettmann R (1994) Attenuation of bovine leukemia virus by deletion of R3 and G4 open reading frames. Proc Natl Acad Sci USA 91:11532–11536CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Florins A, Gillet N, Boxus M, Kerkhofs P, Kettmann R, Willems L (2007) Even attenuated bovine leukemia virus proviruses can be pathogenic in sheep. J Virol 81:10195–10200CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mamoun RZ, Astier T, Guillemain B, Duplan JF (1983) Bovine lymphosarcoma: expression of BLV-related proteins in cultured cells. J Gen Virol 64(Pt 9):1895–1905CrossRefPubMedGoogle Scholar
  11. 11.
    Zarkik S, Decroly E, Wattiez R, Seidah NG, Burny A, Ruysschaert JM (1997) Comparative processing of bovine leukemia virus envelope glycoprotein gp72 by subtilisin/kexin-like mammalian convertases. FEBS Lett 406:205–210CrossRefPubMedGoogle Scholar
  12. 12.
    Mamoun RZ, Morisson M, Rebeyrotte N, Busetta B, Couez D, Kettmann R, Hospital M, Guillemain B (1990) Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins. J Virol 64:4180–4188PubMedPubMedCentralGoogle Scholar
  13. 13.
    Callebaut I, Voneche V, Mager A, Fumiere O, Krchnak V, Merza M, Zavada J, Mammerickx M, Burny A, Portetelle D (1993) Mapping of B-neutralizing and T-helper cell epitopes on the bovine leukemia virus external glycoprotein gp51. J Virol 67:5321–5327PubMedPubMedCentralGoogle Scholar
  14. 14.
    Johnston ER, Radke K (2000) The SU and TM envelope protein subunits of bovine leukemia virus are linked by disulfide bonds, both in cells and in virions. J Virol 74:2930–2935CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Portetelle D, Couez D, Bruck C, Kettmann R, Mammerickx M, Van der Maaten M, Brasseur R, Burny A (1989) Antigenic variants of bovine leukemia virus (BLV) are defined by amino acid substitutions in the NH2 part of the envelope glycoprotein gp51. Virology 169:27–33CrossRefPubMedGoogle Scholar
  16. 16.
    Bruck C, Mathot S, Portetelle D, Berte C, Franssen JD, Herion P, Burny A (1982) Monoclonal antibodies define eight independent antigenic regions on the bovine leukemia virus (BLV) envelope glycoprotein gp51. Virology 122:342–352CrossRefPubMedGoogle Scholar
  17. 17.
    Camargos MF, Stancek D, Rocha MA, Lessa LM, Reis JK, Leite RC (2002) Partial sequencing of env gene of bovine leukaemia virus from Brazilian samples and phylogenetic analysis. J Vet Med B Infect Dis Vet Public Health 49:325–331CrossRefPubMedGoogle Scholar
  18. 18.
    Coulston J, Naif H, Brandon R, Kumar S, Khan S, Daniel RC, Lavin MF (1990) Molecular cloning and sequencing of an Australian isolate of proviral bovine leukaemia virus DNA: comparison with other isolates. J Gen Virol 71(Pt 8):1737–1746CrossRefPubMedGoogle Scholar
  19. 19.
    Beier D, Blankenstein P, Marquardt O, Kuzmak J (2001) Identification of different BLV provirus isolates by PCR, RFLPA and DNA sequencing. Berl Munch Tierarztl Wochenschr 114:252–256PubMedGoogle Scholar
  20. 20.
    Felmer R, Munoz G, Zuniga J, Recabal M (2005) Molecular analysis of a 444 bp fragment of the bovine leukaemia virus gp51 env gene reveals a high frequency of non-silent point mutations and suggests the presence of two subgroups of BLV in Chile. Vet Microbiol 108:39–47CrossRefPubMedGoogle Scholar
  21. 21.
    Camargos MF, Pereda A, Stancek D, Rocha MA, dos Reis JK, Greiser-Wilke I, Leite RC (2007) Molecular characterization of the env gene from Brazilian field isolates of Bovine leukemia virus. Virus Genes 34:343–350CrossRefPubMedGoogle Scholar
  22. 22.
    Monti G, Schrijver R, Beier D (2005) Genetic diversity and spread of Bovine leukaemia virus isolates in Argentine dairy cattle. Arch Virol 150:443–458CrossRefPubMedGoogle Scholar
  23. 23.
    Matsumura K, Inoue E, Osawa Y, Okazaki K (2011) Molecular epidemiology of bovine leukemia virus associated with enzootic bovine leukosis in Japan. Virus Res 155:343–348CrossRefPubMedGoogle Scholar
  24. 24.
    Balic D, Lojkic I, Periskic M, Bedekovic T, Jungic A, Lemo N, Roic B, Cac Z, Barbic L, Madic J (2012) Identification of a new genotype of bovine leukemia virus. Arch Virol 157:1281–1290CrossRefPubMedGoogle Scholar
  25. 25.
    Rola-Luszczak M, Pluta A, Olech M, Donnik I, Petropavlovskiy M, Gerilovych A, Vinogradova I, Choudhury B, Kuzmak J (2013) The molecular characterization of bovine leukaemia virus isolates from Eastern Europe and Siberia and its impact on phylogeny. PLoS One 8:e58705CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Polat M, Ohno A, Takeshima SN, Kim J, Kikuya M, Matsumoto Y, Mingala CN, Onuma M, Aida Y (2015) Detection and molecular characterization of bovine leukemia virus in Philippine cattle. Arch Virol 160:285–296CrossRefPubMedGoogle Scholar
  27. 27.
    Lee E, Kim EJ, Joung HK, Kim BH, Song JY, Cho IS, Lee KK, Shin YK (2015) Sequencing and phylogenetic analysis of the gp51 gene from Korean bovine leukemia virus isolates. Virol J 12:64CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ochirkhuu N, Konnai S, Odbileg R, Nishimori A, Okagawa T, Murata S, Ohashi K (2016) Detection of bovine leukemia virus and identification of its genotype in Mongolian cattle. Arch Virol 161:985–991CrossRefPubMedGoogle Scholar
  29. 29.
    Polat M, Takeshima SN, Hosomichi K, Kim J, Miyasaka T, Yamada K, Arainga M, Murakami T, Matsumoto Y, de la Barra Diaz V, Panei CJ, Gonzalez ET, Kanemaki M, Onuma M, Giovambattista G, Aida Y (2016) A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology 13:4CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lee E, Kim EJ, Ratthanophart J, Vitoonpong R, Kim BH, Cho IS, Song JY, Lee KK, Shin YK (2016) Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. Infect Genet Evol 41:245–254CrossRefPubMedGoogle Scholar
  31. 31.
    National Consultative Committee M (2013) National report on animal genetic resources, The Union of Myanmar. National Consultative committee, MyanmarGoogle Scholar
  32. 32.
    Licursi M, Inoshima Y, Wu D, Yokoyama T, Gonzalez ET, Sentsui H (2003) Provirus variants of bovine leukemia virus in naturally infected cattle from Argentina and Japan. Vet Microbiol 96:17–23CrossRefPubMedGoogle Scholar
  33. 33.
    Hughes SH, Shank PR, Spector DH, Kung HJ, Bishop JM, Varmus HE, Vogt PK, Breitman ML (1978) Proviruses of avian-sarcoma virus are terminally redundant, co-extensive with unintegrated linear DNA and integrated at many sites. Cell 15:1397–1410CrossRefPubMedGoogle Scholar
  34. 34.
    Takeshima SN, Kitamura-Muramatsu Y, Yuan Y, Polat M, Saito S, Aida Y (2015) BLV-CoCoMo-qPCR-2: improvements to the BLV-CoCoMo-qPCR assay for bovine leukemia virus by reducing primer degeneracy and constructing an optimal standard curve. Arch Virol 160:1325–1332CrossRefPubMedGoogle Scholar
  35. 35.
    Ohno A, Takeshima SN, Matsumoto Y, Aida Y (2015) Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014. Virus Res 210:283–290CrossRefPubMedGoogle Scholar
  36. 36.
    Yuan Y, Kitamura-Muramatsu Y, Saito S, Ishizaki H, Nakano M, Haga S, Matoba K, Ohno A, Murakami H, Takeshima SN, Aida Y (2015) Detection of the BLV provirus from nasal secretion and saliva samples using BLV-CoCoMo-qPCR-2: Comparison with blood samples from the same cattle. Virus Res 210:248–254CrossRefPubMedGoogle Scholar
  37. 37.
    Rovnak J, Boyd AL, Casey JW, Gonda MA, Jensen WA, Cockerell GL (1993) Pathogenicity of molecularly cloned bovine leukemia virus. J Virol 67:7096–7105PubMedPubMedCentralGoogle Scholar
  38. 38.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  40. 40.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rodriguez SM, Golemba MD, Campos RH, Trono K, Jones LR (2009) Bovine leukemia virus can be classified into seven genotypes: evidence for the existence of two novel clades. J Gen Virol 90:2788–2797CrossRefPubMedGoogle Scholar
  42. 42.
    Wang H, Norris KM, Mansky LM (2003) Involvement of the matrix and nucleocapsid domains of the bovine leukemia virus Gag polyprotein precursor in viral RNA packaging. J Virol 77:9431–9438CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dube S, Dolcini G, Abbott L, Mehta S, Dube D, Gutierrez S, Ceriani C, Esteban E, Ferrer J, Poiesz B (2000) The complete genomic sequence of a BLV strain from a Holstein cow from Argentina. Virology 277:379–386CrossRefPubMedGoogle Scholar
  44. 44.
    Dube S, Abbott L, Dube DK, Dolcini G, Gutierrez S, Ceriani C, Juliarena M, Ferrer J, Perzova R, Poiesz BJ (2009) The complete genomic sequence of an in vivo low replicating BLV strain. Virol J 6:120CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sagata N, Yasunaga T, Ohishi K, Tsuzuku-Kawamura J, Onuma M, Ikawa Y (1984) Comparison of the entire genomes of bovine leukemia virus and human T-cell leukemia virus and characterization of their unidentified open reading frames. EMBO J 3:3231–3237PubMedPubMedCentralGoogle Scholar
  46. 46.
    Rodriguez SM, Florins A, Gillet N, de Brogniez A, Sanchez-Alcaraz MT, Boxus M, Boulanger F, Gutierrez G, Trono K, Alvarez I, Vagnoni L, Willems L (2011) Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses 3:1210–1248CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ferrer JF, Marshak RR, Abt DA, Kenyon SJ (1978) Persistent lymphocytosis in cattle: its cause, nature and relation to lymphosarcoma. Ann Rech Vet 9:851–857PubMedGoogle Scholar
  48. 48.
    Kono Y, Sentsui H, Arai K, Ishida H, Irishio W (1983) Contact transmission of bovine leukemia virus under insect-free conditions. Nihon Juigaku Zasshi 45:799–802CrossRefPubMedGoogle Scholar
  49. 49.
    Bech-Nielsen S, Piper CE, Ferrer JF (1978) Natural mode of transmission of the bovine leukemia virus: role of bloodsucking insects. Am J Vet Res 39:1089–1092PubMedGoogle Scholar
  50. 50.
    Ferrer JF, Piper CE (1981) Role of colostrum and milk in the natural transmission of the bovine leukemia virus. Cancer Res 41:4906–4909PubMedGoogle Scholar
  51. 51.
    Ohshima K, Okada K, Numakunai S, Yoneyama Y, Sato S, Takahashi K (1981) Evidence on horizontal transmission of bovine leukemia virus due to blood-sucking tabanid flies. Nihon Juigaku Zasshi 43:79–81CrossRefPubMedGoogle Scholar
  52. 52.
    DiGiacomo RF, Darlington RL, Evermann JF (1985) Natural transmission of bovine leukemia virus in dairy calves by dehorning. Can J Comp Med 49:340–342PubMedPubMedCentralGoogle Scholar
  53. 53.
    Lassauzet ML, Thurmond MC, Johnson WO, Stevens F, Picanso JP (1990) Effect of brucellosis vaccination and dehorning on transmission of bovine leukemia virus in heifers on a California dairy. Can J Vet Res 54:184–189PubMedPubMedCentralGoogle Scholar
  54. 54.
    Hopkins SG, Evermann JF, DiGiacomo RF, Parish SM, Ferrer JF, Smith S, Bangert RL (1988) Experimental transmission of bovine leukosis virus by simulated rectal palpation. Vet Rec 122:389–391CrossRefPubMedGoogle Scholar
  55. 55.
    Van der Maaten MJ, Miller JM, Schmerr MJ (1981) In utero transmission of bovine leukemia virus. Am J Vet Res 42:1052–1054PubMedGoogle Scholar
  56. 56.
    Kobayashi S, Hidano A, Tsutsui T, Yamamoto T, Hayama Y, Nishida T, Muroga N, Konishi M, Kameyama K, Murakami K (2014) Analysis of risk factors associated with bovine leukemia virus seropositivity within dairy and beef breeding farms in Japan: a nationwide survey. Res Vet Sci 96:47–53CrossRefPubMedGoogle Scholar
  57. 57.
    Moratorio G, Obal G, Dubra A, Correa A, Bianchi S, Buschiazzo A, Cristina J, Pritsch O (2010) Phylogenetic analysis of bovine leukemia viruses isolated in South America reveals diversification in seven distinct genotypes. Arch Virol 155:481–489CrossRefPubMedGoogle Scholar
  58. 58.
    Zhao X, Buehring GC (2007) Natural genetic variations in bovine leukemia virus envelope gene: possible effects of selection and escape. Virology 366:150–165CrossRefPubMedGoogle Scholar
  59. 59.
    Gatot JS, Callebaut I, Van Lint C, Demonte D, Kerkhofs P, Portetelle D, Burny A, Willems L, Kettmann R (2002) Bovine leukemia virus SU protein interacts with zinc, and mutations within two interacting regions differently affect viral fusion and infectivity in vivo. J Virol 76:7956–7967CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bruck C, Portetelle D, Burny A, Zavada J (1982) Topographical analysis by monoclonal antibodies of BLV-gp51 epitopes involved in viral functions. Virology 122:353–362CrossRefPubMedGoogle Scholar
  61. 61.
    Bruck C, Portetelle D, Mammerickx M, Mathot S, Burny A (1984) Epitopes of bovine leukemia virus glycoprotein gp51 recognized by sera of infected cattle and sheep. Leuk Res 8:315–321CrossRefPubMedGoogle Scholar
  62. 62.
    Willems L, Kettmann R, Burny A (1991) The amino acid (157-197) peptide segment of bovine leukemia virus p34tax encompass a leucine-rich globally neutral activation domain. Oncogene 6:159–163PubMedGoogle Scholar
  63. 63.
    Alexandersen S, Carpenter S, Christensen J, Storgaard T, Viuff B, Wannemuehler Y, Belousov J, Roth JA (1993) Identification of alternatively spliced mRNAs encoding potential new regulatory proteins in cattle infected with bovine leukemia virus. J Virol 67:39–52PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Meripet Polat
    • 1
    • 2
  • Hla Hla Moe
    • 3
  • Takeshi Shimogiri
    • 4
  • Kyaw Kyaw Moe
    • 5
  • Shin-nosuke Takeshima
    • 1
    • 2
  • Yoko Aida
    • 1
    • 2
  1. 1.Viral Infectious Diseases UnitRIKENWakoJapan
  2. 2.Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier ScienceThe University of TokyoWakoJapan
  3. 3.Department of Animal ScienceUniversity of Veterinary ScienceNay Pyi TawMyanmar
  4. 4.Faculty of AgricultureKagoshima UniversityKagoshimaJapan
  5. 5.Department of Pathology and MicrobiologyUniversity of Veterinary ScienceNay Pyi TawMyanmar

Personalised recommendations