Archives of Virology

, Volume 161, Issue 12, pp 3445–3453 | Cite as

Apigenin inhibits African swine fever virus infection in vitro

  • Astghik Hakobyan
  • Erik Arabyan
  • Aida Avetisyan
  • Liana Abroyan
  • Lina Hakobyan
  • Hovakim ZakaryanEmail author
Original Article


African swine fever virus (ASFV) is one of the most devastating diseases of domestic pigs for which no effective vaccines are available. Flavonoids, natural products isolated from plants, have been reported to have significant in vitro and in vivo antiviral activity against different viruses. Here, we tested the antiviral effect of five flavonoids on the replication of ASFV in Vero cells. Our results showed a potent, dose-dependent anti-ASFV effect of apigenin in vitro. Time-of-addition experiments revealed that apigenin was highly effective at the early stages of infection. Apigenin reduced the ASFV yield by more than 99.99 % when it was added at 1 hpi. The antiviral activity of apigenin was further investigated by evaluation of ASFV protein synthesis and viral factories. This flavonoid inhibited ASFV-specific protein synthesis and viral factory formation. ASFV-infected cells continuously treated with apigenin did not display a cytopathic effect. Further studies addressing the use of apigenin in vivo are needed.


Flavonoid Catechin Genistein Antiviral Activity Vero Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank ARMACAD for investments in laboratory renovation. We thank Dr. Haig Eskandarian (EPFL, Switzerland) for critical reading and useful comments.

Compliance with ethical standards

Ethical standards

This work was supported by a Grant from the Armenian National Science and Education Fund (Biotech-3751). All authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Bastos AD, Penrith ML, Crucière C, Edrich JL, Hutchings G, Roger F, Couacy-Hymann E, Thomson RG (2003) Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch Virol 148:693–706. doi: 10.1007/s00705-002-0946-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Calland N, Albecka A, Belouzard S, Wychowski C, Duverlie G, Descamps V, Hober D, Dubuisson J, Rouillé Y, Séron K (2012) (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 55:720–729. doi: 10.1002/hep.24803 CrossRefPubMedGoogle Scholar
  3. 3.
    Carrascosa AL, Bustos MJ, de Leon P (2011) Methods for growing and titrating African swine fever virus: field and laboratory samples. Curr Protoc Cell Biol Chapter 26, Unit 26.14Google Scholar
  4. 4.
    Chiang LC, Chiang W, Liu MC, Lin CC (2003) In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J Antimicrob Chemother 52:194–198. doi: 10.1093/jac/dkg291 CrossRefPubMedGoogle Scholar
  5. 5.
    del Val M, Viñuela E (1987) Glycosylated components induced in African swine fever (ASF) virus-infected Vero cells. Virus Res 7:297–308. doi: 10.1016/0168-1702(87)90044-X CrossRefPubMedGoogle Scholar
  6. 6.
    Fabregas J, García D, Fernandez-Alonso M, Rocha AI, Gómez-Puertas P, Escribano JM, Otero A, Coll JM (1999) In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral Res 44:67–73. doi: 10.1016/S0166-3542(99)00049-2 CrossRefPubMedGoogle Scholar
  7. 7.
    Galindo I, Hernáez B, Berná J, Fenoll J, Cenis JL, Escribano JM, Alonso C (2011) Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swinefever virus replication. Antiviral Res 91:57–63. doi: 10.1016/j.antiviral.2011.04.013 CrossRefPubMedGoogle Scholar
  8. 8.
    García-Villalón D, Gil-Fernández C (1991) Antiviral activity of sulfated polysaccharides against African swine fever virus. Antiviral Res 15:139–148. doi: 10.1016/0166-3542(91)90031-L CrossRefPubMedGoogle Scholar
  9. 9.
    Gómez-Puertas P, Rodríguez F, Oviedo JM, Brun A, Alonso C, Escribano JM (1998) The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 243:461–471. doi: 10.1006/viro.1998.9068 CrossRefPubMedGoogle Scholar
  10. 10.
    Ha SY, Youn H, Song CS, Kang SC, Bae JJ, Kim HT, Lee KM, Eom TH, Kim IS, Kwak JH (2014) Antiviral effect of flavonol glycosides isolated from the leaf of Zanthoxylum piperitum on influenza virus. J Microbiol 52:340–344. doi: 10.1007/s12275-014-4073-5 CrossRefPubMedGoogle Scholar
  11. 11.
    Helfer M, Koppensteiner H, Schneider M, Rebensburg S, Forcisi S, Müller C, Schmitt-Kopplin P, Schindler M, Brack-Werner R (2014) The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor. PLoS One 9:e87487. doi: 10.1371/journal.pone.0087487 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hernaez B, Cabezas M, Muñoz-Moreno R, Galindo I, Cuesta-Geijo MA, Alonso C (2013) A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr Mol Med 13:305–316. doi: 10.2174/156652413804810736 CrossRefPubMedGoogle Scholar
  13. 13.
    Hernaez B, Escribano JM, Alonso C (2006) Visualization of the African swine fever virus infection in living cells by incorporation into thevirus particle of green fluorescent protein-p54 membrane protein chimera. Virology 350:1–14. doi: 10.1016/j.virol.2006.01.021 CrossRefPubMedGoogle Scholar
  14. 14.
    Hernaez B, Escribano JM, Alonso C (2008) African swine fever virus protein p30 interaction with heterogeneous nuclear ribonucleoprotein K (hnRNP-K) during infection. FEBS Lett 582:3275–3280. doi: 10.1016/j.febslet.2008.08.031 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hernaez B, Alonso C (2010) Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J Virol 84:2100–2109. doi: 10.1128/JVI.01557-09 CrossRefPubMedGoogle Scholar
  16. 16.
    Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K (2012) Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int J Mol Sci 13:16785–16795. doi: 10.3390/ijms131216785 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Karalova EM, Sargsyan KhV, Hampikian GK, Voskanyan HE, Abroyan LO, Avetisyan AS, Hakobyan LA, Arzumanyan HH, Zakaryan HS, Karalyan ZA (2011) Phenotypic and cytologic studies of lymphoid cells and monocytes in primary culture of porcine bone marrow during infection of African swine fever virus. In Vitro Cell Dev Biol Anim 47:200–204. doi: 10.1007/s11626-010-9380-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Khachatoorian R, Arumugaswami V, Raychaudhuri S, Yeh GK, Maloney EM, Wang J, Dasgupta A, French SW (2012) Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. Virology 433:346–355. doi: 10.1016/j.virol.2012.08.029 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kolokoltsov AA, Adhikary S, Garver J, Johnson L, Davey RA, Vela EM (2012) Inhibition of Lassa virus and Ebola virus infection in host cells treated with the kinase inhibitors genistein and tyrphostin. Arch Virol 157:121–127. doi: 10.1007/s00705-011-1115-8 CrossRefPubMedGoogle Scholar
  20. 20.
    Miguel Ángel CG, Chiappi M, Galindo I, Barrado-Gil L, Muñoz-Moreno R, Carrascosa JL, Alonso C (2015) Cholesterol flux is required for endosomal progression of African swine fever virions during the initial establishment of infection. J Virol 90:1534–1543. doi: 10.1128/JVI.02694-15 Google Scholar
  21. 21.
    Murali KS, Sivasubramanian S, Vincent S, Murugan SB, Giridaran B, Dinesh S, Gunasekaran P, Krishnasamy K, Sathishkumar R (2015) Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon. Asian Pac J Trop Med 8:352–358. doi: 10.1016/S1995-7645(14)60343-6 CrossRefPubMedGoogle Scholar
  22. 22.
    Potterat O, Hamburger M (2008) Drug discovery and development with plant-derived compounds. Prog Drug Res 65:47–118Google Scholar
  23. 23.
    Qian S, Fan W, Qian P, Zhang D, Wei Y, Chen H, Li X (2015) Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses 7:1613–1626. doi: 10.3390/v7041613 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rodríguez JM, Salas ML (2013) African swine fever virus transcription. Virus Res 173:15–28. doi: 10.1016/j.virusres.2012.09.014 CrossRefPubMedGoogle Scholar
  25. 25.
    Sánchez-Vizcaíno JM, Mur L, Gomez-Villamandos JC, Carrasco L (2015) An update on the epidemiology and pathology of African swine fever. J Comp Pathol 152-9-21. doi: 10.1016/j.jcpa.2014.09.003
  26. 26.
    Saotome K, Morita H, Umeda M (1989) Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicol Vitro 3:317–321. doi: 10.1016/0887-2333(89)90039-8 CrossRefGoogle Scholar
  27. 27.
    Shibata C, Ohno M, Otsuka M, Kishikawa T, Goto K, Muroyama R, Kato N, Yoshikawa T, Takata A, Koike K (2014) The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology 462–463:42–48. doi: 10.1016/j.virol.2014.05.024 CrossRefPubMedGoogle Scholar
  28. 28.
    Son M, Lee M, Sung GH, Lee T, Shin YS, Cho H, Lieberman PM, Kang H (2013) Bioactive activities of natural products against herpesvirus infection. J Microbiol 51:545–551. doi: 10.1007/s12275-013-3450-9 CrossRefPubMedGoogle Scholar
  29. 29.
    Terahara N (2015) Flavonoids in foods: a review. Nat Prod Commun 10:521–528PubMedGoogle Scholar
  30. 30.
    Tong X, Pelling JC (2013) Targeting the PI3K/Akt/mTOR axis by apigenin for cancer prevention. Anticancer Agents Med Chem 13:971–978. doi: 10.2174/18715206113139990119 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tulman ER, Delhon GA, Ku BK, Rock DL (2009) African swine fever virus. Curr Top Microbiol Immunol 328:43–87PubMedGoogle Scholar
  32. 32.
    Vela EM, Bowick GC, Herzog NK, Aronson JF (2008) Genistein treatment of cells inhibits arenavirus infection. Antiviral Res 77:153–156. doi: 10.1016/j.antiviral.2007.09.005 CrossRefPubMedGoogle Scholar
  33. 33.
    Xu L, Su W, Jin J, Chen J, Li X, Zhang X, Sun M, Sun S, Fan P, An D, Zhang H, Zhang X, Kong W, Ma T, Jiang C (2014) Identification of luteolin as enterovirus 71 and coxsackievirus A16 inhibitors through reporter viruses and cell viability-based screening. Viruses 6:2778–2795. doi: 10.3390/v6072778 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yang ZF, Bai LP, Huang WB, Li XZ, Zhao SS, Zhong NS, Jiang ZH (2014) Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia 93:47–53. doi: 10.1016/j.fitote.2013.12.011 CrossRefPubMedGoogle Scholar
  35. 35.
    Zakaryan H, Revilla Y (2016) African swine fever virus: current state and future perspectives in vaccine and antiviral research. Vet Microbiol 185:15–19. doi: 10.1016/j.vetmic.2016.01.016 CrossRefPubMedGoogle Scholar
  36. 36.
    Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S (2011) Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J 8:560. doi: 10.1186/1743-422X-8-560 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhang L, Cheng X, Gao Y, Zheng J, Xu Q, Sun Y, Guan H, Yu H, Sun Z (2015) Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct 6:3464–3472. doi: 10.1039/c5fo00671f CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang W, Qiao H, Lv Y, Wang J, Chen X, Hou Y, Tan R, Li E (2014) Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PLoS One 9:e110429. doi: 10.1371/journal.pone.0110429 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Astghik Hakobyan
    • 1
  • Erik Arabyan
    • 1
  • Aida Avetisyan
    • 2
  • Liana Abroyan
    • 2
  • Lina Hakobyan
    • 2
  • Hovakim Zakaryan
    • 1
    • 3
    Email author
  1. 1.Group of Antiviral Defense MechanismsInstitute of Molecular Biology of NAS RAYerevanArmenia
  2. 2.Laboratory of Cell Biology and VirologyInstitute of Molecular Biology of NAS RAYerevanArmenia
  3. 3.Yerevan State Medical University after M. HeratsiYerevanArmenia

Personalised recommendations