Archives of Virology

, Volume 161, Issue 12, pp 3597–3600 | Cite as

Characteristics and complete genome analysis of a novel jumbo phage infecting pathogenic Bacillus pumilus causing ginger rhizome rot disease

  • Yihui Yuan
  • Meiying Gao
Annotated Sequence Record


Tailed phages with genomes larger than 200 kbp are classified as jumbo phage and exhibit extremely high diversity. In this study, a novel jumbo phage, vB_BpuM_BpSp, infecting pathogenic Bacillus pumilus, the cause of ginger rhizome rot disease, was isolated. Notable features of phage vB_BpuM_BpSp are the large phage capsid of 137 nm and baseplate-attached curly tail fibers. The genome of the phage is 255,569 bp in size with G+C content of 25.9 %, and it shows low similarity to known biological entities. The phage genome contains 318 predicted coding sequences. Among these predicted coding sequences, 26 genes responsible for nucleotide metabolism were found, and seven structural genes could be identified. The findings of this study provide new understanding of the genetic diversity of phages.


Phage Genome Endolysin Tail Fiber LysM Domain Predict Code Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the National Natural Science Foundation of China (No. 31500155, 31170123).

Supplementary material

705_2016_3053_MOESM1_ESM.pdf (131 kb)
Supplementary material 1 (PDF 131 kb)


  1. 1.
    Abbasifar R, Griffiths MW, Sabour PM, Ackermann HW, Vandersteegen K, Lavigne R, Noben JP, Villa AA, Abbasifar A, Nash JHE, Kropinski AM (2014) Supersize me: Cronobacter sakazakii phage GAP32. Virology 460:138–146CrossRefPubMedGoogle Scholar
  2. 2.
    Ackermann HW, Yoshino S, Ogata S (1995) A Bacillus phage that is a living fossil. Can J Microbiol 41:294–297CrossRefGoogle Scholar
  3. 3.
    Ackermann HW, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157:1843–1849CrossRefPubMedGoogle Scholar
  4. 4.
    Belyaeva NN, Azizbeky RR (1968) Fine structure of new Bacillus subtilis phage Ar9 with complex morphology. Virology 34:176CrossRefPubMedGoogle Scholar
  5. 5.
    Chang HC, Chen CR, Lin JW, Shen GH, Chang KM, Tseng YH, Weng SF (2005) Isolation and characterization of novel giant Stenotrophomonas maltophilia phage phi SMA5. Appl Environ Microb 71:1387–1393CrossRefGoogle Scholar
  6. 6.
    Cole JR, Wang Q, Fish JA, Chai BL, McGarrell DM, Sun YN, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642CrossRefPubMedGoogle Scholar
  7. 7.
    Drulis-Kawa Z, Olszak T, Danis K, Majkowska-Skrobek G, Ackermann HW (2014) A giant Pseudomonas phage from Poland. Arch Virol 159:567–572CrossRefPubMedGoogle Scholar
  8. 8.
    Eiserlin FA (1967) Structure of Bacillus subtilis bacteriophage Pbs 1. J Ultra Mol Struct R 17:342–347CrossRefGoogle Scholar
  9. 9.
    Hendrix RW (2009) Jumbo bacteriophages. Curr Top Microbiol 328:229–240Google Scholar
  10. 10.
    Hertveldt K, Lavigne R, Pleteneva E, Sernova N, Kurochkina L, Korchevskii R, Robben J, Mesyanzhinov V, Krylov VN, Volckaert G (2005) Genome comparison of Pseudomonas aeruginosa large phages. J Mol Biol 354:536–545CrossRefPubMedGoogle Scholar
  11. 11.
    Hu B, Margolin W, Molineux IJ, Liu J (2015) Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci USA 112:E4919–E4928CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jin T, Zhang X, Zhang Y, Hu Z, Fu Z, Fan J, Wu M, Wang Y, Shen P, Chen X (2014) Biological and genomic analysis of a PBSX-like defective phage induced from Bacillus pumilus AB94180. Arch Virol 159:739–752CrossRefPubMedGoogle Scholar
  13. 13.
    Kiljunen S, Hakala K, Pinta E, Huttunen S, Pluta P, Gador A, Lonnberg H, Skurnik M (2005) Yersiniophage phi R1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine. Microbiol-Sgm 151:4093–4102CrossRefGoogle Scholar
  14. 14.
    Lecoutere E, Ceyssens PJ, Miroshnikov KA, Mesyanzhinov VV, Krylov VN, Noben JP, Robben J, Hertveldt K, Volckaert G, Lavigne R (2009) Identification and comparative analysis of the structural proteomes of phi KZ and EL, two giant Pseudomonas aeruginosa bacteriophages. Proteomics 9:3215–3219CrossRefPubMedGoogle Scholar
  15. 15.
    Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R (2013) Expanding the marine virosphere using metagenomics. PLoS Genet 9:e1003987CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Murphy JS, Philipson L (1962) Purification of B. megatherium phage G and evidence for a muralytic enzyme as an integral part of the phage. J Gen Physiol 45:155–168CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Peng Q, Yuan YH, Gao MY (2013) Bacillus pumilus, a novel ginger rhizome rot pathogen in China. Plant Dis 97:1308–1315CrossRefGoogle Scholar
  18. 18.
    Rohwer F (2003) Global phage diversity. Cell 113:141CrossRefPubMedGoogle Scholar
  19. 19.
    Schade SZ, Adler J, Ris H (1967) How bacteriophage chi attacks motile bacteria. J Virol 1:599–609PubMedPubMedCentralGoogle Scholar
  20. 20.
    Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Serwer P, Hayes SJ, Thomas JA, Hardies SC (2007) Propagating the missing bacteriophages: a large bacteriophage in a new class. Virol J 4:21CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Skurnik M, Hyytiainen HJ, Happonen LJ, Kiljunen S, Datta N, Mattinen L, Williamson K, Kristo P, Szeliga M, Kalin-Manttari L, Ahola-Iivarinen E, Kalkkinen N, Butcher SJ (2012) Characterization of the genome, proteome, and structure of yersiniophage phi R1-37. J Virol 86:12625–12642CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thomas JA, Hardies SC, Rolando M, Hayes SJ, Lieman K, Carroll CA, Weintraub ST, Serwer P (2007) Complete genomic sequence and mass spectrometric analysis of highly diverse, atypical Bacillus thuringiensis phage 0305 phi 8-36. Virology 368:405–421CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yamada T, Satoh S, Ishikawa H, Fujiwara A, Kawasaki T, Fujie M, Ogata H (2010) A jumbo phage infecting the phytopathogen Ralstonia solanacearum defines a new lineage of the Myoviridae family. Virology 398:135–147CrossRefPubMedGoogle Scholar
  25. 25.
    Yuan YH, Gao MY, Wu DD, Liu PM, Wu Y (2012) Genome Characteristics of a Novel Phage from Bacillus thuringiensis Showing High Similarity with Phage from Bacillus cereus. Plos One 7:e37557CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yuan YH, Gao MY (2015) Genomic analysis of a ginger pathogen Bacillus pumilus providing the understanding to the pathogenesis and the novel control strategy. Sci Rep-UK 5:10259CrossRefGoogle Scholar
  27. 27.
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations