Advertisement

Archives of Virology

, Volume 161, Issue 9, pp 2379–2385 | Cite as

Characterization of the nuclear import signal of herpes simplex virus 1 UL31

  • Mingsheng Cai
  • Daixiong Chen
  • Zhancheng Zeng
  • Hang Yang
  • Si Jiang
  • Xiaowei Li
  • Jingying Mai
  • Tao Peng
  • Meili LiEmail author
Original Article

Abstract

The herpes simplex virus 1 (HSV-1) UL31 protein is a multifunctional nucleoprotein that is important for viral infection; however, little is known concerning its subcellular localization signal. Here, by transfection with a series of HSV-1 UL31 deletion mutants fused to enhanced yellow fluorescent protein (EYFP), a bipartite nuclear localization signal (NLS) was identified and mapped to amino acids (aa) 1 to 27 (MYDTDPHRRGSRPGPYHGKERRRSRSS). Additionally, fluorescence results showed that the predicted nuclear export signal (NES) might be nonfunctional, and the functional NES of UL31 might require a specific conformation. Taken together, these results would provide significant information for the study of the biological function of UL31 during HSV-1 infection.

Keywords

Nuclear Localization Signal Nuclear Export Signal Enhance Yellow Fluorescent Protein Bipartite Nuclear Localization Signal 15PY16 Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31400150 and 31200120); the Natural Science Foundation of Guangdong Province (2015A030313473 and S2013040016596); the Science and Technology Plan Projects of Guangzhou City, China (201607010088 and 2013J4100030); the Pearl River S&T Nova Program of Guangzhou (2013J2200018); the Training Program for Outstanding Young Teachers in Universities of Guangdong Province (YQ2015132); the Science Research Foundation from Department of Education of Guangdong, China (2013LYM_0096 and 2013KJCX0154); the Science and Technology Program of Guangdong, China (2013B031800022); the Scientific Research Projects in Colleges and Universities of Guangzhou (1201430024, 1201610025 and 1201610024); the Scientific Research Foundation for the Ph.D., Guangzhou Medical University (2014C02); the Medical Scientific Research Foundation of Guangdong Province, China (B2012165); the Thousand Hundred Ten Projects of Guangzhou Medical University, Guangdong; Guangdong Undergraduate Training Programs of Science & Technology Innovation (Guangdong Climb Plan: pdjh2016a0406 and pdjh2016b0409); and the Students’ Extracurricular Scientific and Technological Activities in Guangzhou Medical University (2015A003, 2015A008, 2015A019 and 2015B020). We thank Dr. Chunfu Zheng (Institutes of Biology and Medical Sciences, Soochow University) for the generous gift of the HSV-1 F strain.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. 1.
    Ali SA, Steinkasserer A (1995) PCR-ligation-PCR mutagenesis: a protocol for creating gene fusions and mutations. Biotechniques 18:746–750PubMedGoogle Scholar
  2. 2.
    Blaho JA, Mitchell C, Roizman B (1994) An amino acid sequence shared by the herpes simplex virus 1 alpha regulatory proteins 0, 4, 22, and 27 predicts the nucleotidylylation of the UL21, UL31, UL47, and UL49 gene products. J Biol Chem 269:17401–17410PubMedGoogle Scholar
  3. 3.
    Cai MS, Wang S, Xing JJ, Zheng CF (2011) Characterization of the nuclear import and export signals, and subcellular transport mechanism of varicella-zoster virus ORF9. J Gen Virol 92:621–626CrossRefPubMedGoogle Scholar
  4. 4.
    Cai MS, Jiang S, Zeng ZC, Li XW, Mo CC, Yang YJ, Chen CK, Xie PP, Bian Y, Wang JL, Huang JL, Chen DX, Peng T, Li ML (2016) Probing the nuclear import signal and nuclear transport molecular determinants of PRV ICP22. Cell Biosci 6:3CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cai MS, Si J, Li XW, Zeng ZC, Li ML (2016) Characterization of the nuclear import mechanisms of HSV-1 UL31. Biol Chem 397:555–561CrossRefPubMedGoogle Scholar
  6. 6.
    Chang YE, Roizman B (1993) The product of the UL31 gene of herpes simplex virus 1 is a nuclear phosphoprotein which partitions with the nuclear matrix. J Virol 67:6348–6356PubMedPubMedCentralGoogle Scholar
  7. 7.
    Chang YE, Van Sant C, Krug PW, Sears AE, Roizman B (1997) The null mutant of the U(L)31 gene of herpes simplex virus 1: construction and phenotype in infected cells. J Virol 71:8307–8315PubMedPubMedCentralGoogle Scholar
  8. 8.
    Emmott E, Hiscox JA (2009) Nucleolar targeting: the hub of the matter. EMBO Rep 10:231–238CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Funk C, Ott M, Raschbichler V, Nagel CH, Binz A, Sodeik B, Bauerfeind R, Bailer SM (2015) The herpes simplex virus protein pUL31 escorts nucleocapsids to sites of nuclear egress, a process coordinated by its N-terminal domain. PLoS Pathog 11:e1004957CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gorlich D, Mattaj IW (1996) Nucleocytoplasmic transport. Science 271:1513–1518CrossRefPubMedGoogle Scholar
  11. 11.
    Klupp BG, Granzow H, Fuchs W, Keil GM, Finke S, Mettenleiter TC (2007) Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc Natl Acad Sci USA 104:7241–7246CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li ML, Cui W, Mo CC, Wang JL, Zhao ZY, Cai MS (2014) Cloning, expression, purification, antiserum preparation and its characteristics of the truncated UL6 protein of herpes simplex virus 1. Mol Biol Rep 41:5997–6002CrossRefPubMedGoogle Scholar
  13. 13.
    Li ML, Jiang S, Mo CC, Zeng ZC, Li XW, Chen CK, Yang YJ, Wang JL, Huang JL, Chen DX, Peng T, Cai MS (2015) Identification of molecular determinants for the nuclear import of pseudorabies virus UL31. Arch Biochem Biophys 587:12–17CrossRefPubMedGoogle Scholar
  14. 14.
    Li ML, Jiang S, Wang JL, Mo CC, Zeng ZC, Yang YJ, Chen CK, Li XW, Cui W, Huang JL, Peng T, Cai MS (2015) Characterization of the nuclear import and export signals of pseudorabies virus UL31. Arch Virol 160:2591–2594CrossRefPubMedGoogle Scholar
  15. 15.
    Mou F, Wills E, Baines JD (2009) Phosphorylation of the U(L)31 protein of herpes simplex virus 1 by the U(S)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J Virol 83:5181–5191CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nakielny S, Dreyfuss G (1999) Transport of proteins and RNAs in and out of the nucleus. Cell 99:677–690CrossRefPubMedGoogle Scholar
  17. 17.
    Park R, Baines JD (2006) Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol 80:494–504CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Passvogel L, Klupp BG, Granzow H, Fuchs W, Mettenleiter TC (2015) Functional characterization of nuclear trafficking signals in pseudorabies virus pUL31. J Virol 89:2002–2012CrossRefPubMedGoogle Scholar
  19. 19.
    Reynolds AE, Wills EG, Roller RJ, Ryckman BJ, Baines JD (2002) Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 76:8939–8952CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Reynolds AE, Liang L, Baines JD (2004) Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes U(L)31 and U(L)34. J Virol 78:5564–5575CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Roberts KL, Baines JD (2011) UL31 of herpes simplex virus 1 is necessary for optimal NF-kappaB activation and expression of viral gene products. J Virol 85:4947–4953CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Roller RJ, Bjerke SL, Haugo AC, Hanson S (2010) Analysis of a charge cluster mutation of herpes simplex virus type 1 UL34 and its extragenic suppressor suggests a novel interaction between pUL34 and pUL31 that is necessary for membrane curvature around capsids. J Virol 84:3921–3934CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Simpson-Holley M, Baines J, Roller R, Knipe DM (2004) Herpes simplex virus 1 U(L)31 and U(L)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J Virol 78:5591–5600CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tanaka M, Kagawa H, Yamanashi Y, Sata T, Kawaguchi Y (2003) Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol 77:1382–1391CrossRefPubMedGoogle Scholar
  25. 25.
    Wang KZ, Ni LW, Wang S, Zheng CF (2014) Herpes simplex virus 1 protein kinase US3 hyperphosphorylates p65/RelA and dampens NF-kappaB activation. J Virol 88:7941–7951CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ye GJ, Roizman B (2000) The essential protein encoded by the UL31 gene of herpes simplex virus 1 depends for its stability on the presence of UL34 protein. Proc Natl Acad Sci USA 97:11002–11007CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Mingsheng Cai
    • 1
    • 2
  • Daixiong Chen
    • 1
    • 2
  • Zhancheng Zeng
    • 1
  • Hang Yang
    • 2
  • Si Jiang
    • 1
  • Xiaowei Li
    • 1
  • Jingying Mai
    • 1
  • Tao Peng
    • 1
    • 2
  • Meili Li
    • 1
    • 2
    Email author
  1. 1.Department of Pathogenic Biology and Immunology, Guangzhou Hoffmann Institute of Immunology, School of Basic ScienceGuangzhou Medical UniversityGuangzhouPeople’s Republic of China
  2. 2.Guangdong Provincial Key Laboratory of Allergic Reactions & Clinical Immunology, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople’s Republic of China

Personalised recommendations