Advertisement

Archives of Virology

, Volume 161, Issue 8, pp 2075–2086 | Cite as

Activation of toll-like receptor signaling pathways leading to nitric oxide-mediated antiviral responses

  • Mohamed Sarjoon Abdul-Cader
  • Aruna Amarasinghe
  • Mohamed Faizal Abdul-Careem
Review

Abstract

Toll-like receptors (TLRs), well-characterized pattern-recognizing receptors of the innate arm of the immune system, are vital in detecting pathogen-associated molecular patterns (PAMPs). The TLR-PAMP interaction initiates an intracellular signaling cascade, predominantly culminating in upregulation of antiviral components, including inducible nitric oxide synthase (iNOS). After activation, various TLR pathways can promote iNOS production via the myeloid differentiation primary response-88 (MyD-88) adapter protein. Subsequently, iNOS facilitates production of nitric oxide (NO), a highly reactive and potent antiviral molecule that can inhibit replication of RNA and DNA viruses. Furthermore, NO can diffuse freely across cell membranes and elicit antiviral mechanisms in various ways, including direct and indirect damage to viral genomes. This review emphasizes current knowledge of NO-mediated antiviral responses elicited after activation of TLR signaling pathways.

Keywords

Nitric Oxide Respiratory Syncytial Virus Influenza Virus Infection Infectious Bursal Disease Virus Antiviral Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The graduate programs of M.S.A and A.A. are supported by the Margaret Gunn Endowment for Animal Research (University of Calgary), Agriculture and Agri-Food Canada, and Saskatchewan Agriculture Ministry (Canada) grants received by MFA. We thank Dr. John Kastelic, University of Calgary Faculty of Veterinary Medicine, for extensive editing of the manuscript.

Compliance with ethical standards

Funding

Margaret Gunn Endowment for Animal Research, University of Calgary, Canada (10007898); Agriculture and Agri-Food Canada (10009962); Saskatchewan Agriculture Ministry, Canada (10010719).

Conflict of interest

Mohamed Sarjoon Abdul-Cader declares that he has no conflict of interest. Aruna Amarasinghe declares that he has no conflict of interest. Mohamed Faizal Abdul-Careem declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Abdul-Careem MF, Haq K, Shanmuganathan S, Read LR, Schat KA, Heidari M, Sharif S (2009) Induction of innate host responses in the lungs of chickens following infection with a very virulent strain of Marek’s disease virus. Virology 393:250–257PubMedCrossRefGoogle Scholar
  2. 2.
    Akaike T, Noguchi Y, Ijiri S, Setoguchi K, Suga M, Zheng YM, Dietzschold B, Maeda H (1996) Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proceed Nat Acad Sci USA 93:2448–2453CrossRefGoogle Scholar
  3. 3.
    Akarid K, Sinet M, Desforges B, Gougerot-Pocidalo MA (1995) Inhibitory effect of nitric oxide on the replication of a murine retrovirus in vitro and in vivo. J Virol 69:7001–7005PubMedPubMedCentralGoogle Scholar
  4. 4.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCrossRefGoogle Scholar
  5. 5.
    Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653PubMedCrossRefGoogle Scholar
  6. 6.
    Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738PubMedCrossRefGoogle Scholar
  8. 8.
    Barjesteh N, Behboudi S, Brisbin JT, Villanueva AI, Nagy E, Sharif S (2014) TLR ligands induce antiviral responses in chicken macrophages. PloS One 9:e105713PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Beklen A, Sorsa T, Konttinen YT (2009) Toll-like receptors 2 and 5 in human gingival epithelial cells co-operate with T-cell cytokine interleukin-17. Oral Microbiol Immunol 24:38–42PubMedCrossRefGoogle Scholar
  10. 10.
    Benencia F, Courreges MC, Gamba G, Cavalieri H, Massouh EJ (2001) Effect of aminoguanidine, a nitric oxide synthase inhibitor, on ocular infection with herpes simplex virus in Balb/c mice. Invest Ophthalmol Visual Sci 42:1277–1284Google Scholar
  11. 11.
    Beutler B (2000) Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 12:20–26PubMedCrossRefGoogle Scholar
  12. 12.
    Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K (2006) Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Ann Rev Immunol 24:353–389CrossRefGoogle Scholar
  13. 13.
    Bi Z, Reiss CS (1995) Inhibition of vesicular stomatitis virus infection by nitric oxide. J Virol 69:2208–2213PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP, Wagner H, Kirschning CJ, Ter Meulen V, Schneider-Schaulies S (2002) Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76:8729–8736PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bittencourt VC, Figueiredo RT, da Silva RB, Mourao-Sa DS, Fernandez PL, Sassaki GL, Mulloy B, Bozza MT, Barreto-Bergter E (2006) An alpha-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation. J Biol Chem 281:22614–22623PubMedCrossRefGoogle Scholar
  16. 16.
    Brownlie R, Zhu J, Allan B, Mutwiri GK, Babiuk LA, Potter A, Griebel P (2009) Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol 46:3163–3170PubMedCrossRefGoogle Scholar
  17. 17.
    Brownlie R, Allan B (2011) Avian toll-like receptors. Cell Tissue Res 343:121–130PubMedCrossRefGoogle Scholar
  18. 18.
    Cao W, Baniecki ML, McGrath WJ, Bao C, Deming CB, Rade JJ, Lowenstein CJ, Mangel WF (2003) Nitric oxide inhibits the adenovirus proteinase in vitro and viral infectivity in vivo. FASEB J Off Publ Feder Am Soc Experim Biol 17:2345–2346Google Scholar
  19. 19.
    Chang YC, Li PC, Chen BC, Chang MS, Wang JL, Chiu WT, Lin CH (2006) Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin E2, protein kinase A, p38 MAPK, and nuclear factor-kappaB pathways. Cell Signal 18:1235–1243PubMedCrossRefGoogle Scholar
  20. 20.
    Chang ZL (2010) Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res Off J Euro Histam Res Soc [et al] 59:791–808Google Scholar
  21. 21.
    Colasanti M, Persichini T, Venturini G, Ascenzi P (1999) S-nitrosylation of viral proteins: molecular bases for antiviral effect of nitric oxide. IUBMB Life 48:25–31PubMedCrossRefGoogle Scholar
  22. 22.
    Conley ME (2007) Immunodeficiency: UNC-93B gets a toll call. Trends Immunol 28:99–101PubMedCrossRefGoogle Scholar
  23. 23.
    Crippen TL, Sheffield CL, He H, Lowry VK, Kogut MH (2003) Differential nitric oxide production by chicken immune cells. Dev Comp Immunol 27:603–610PubMedCrossRefGoogle Scholar
  24. 24.
    Croen KD (1993) Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 91:2446–2452PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dalpke AH, Heeg K (2004) CpG-DNA as immune response modifier. Int J Med Microb IJMM 294:345–354CrossRefGoogle Scholar
  26. 26.
    Darwish I, Miller C, Kain KC, Liles WC (2012) Inhaled nitric oxide therapy fails to improve outcome in experimental severe influenza. Int J Med Sci 9:157–162PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    De Kimpe SJ, Kengatharan M, Thiemermann C, Vane JR (1995) The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proceed Nat Acad Sci USA 92:10359–10363CrossRefGoogle Scholar
  28. 28.
    Dellacasagrande J (2009) Ligands, cell-based models, and readouts required for Toll-like receptor action. Methods Mol Biol 517:15–32PubMedCrossRefGoogle Scholar
  29. 29.
    Dolganiuc A, Oak S, Kodys K, Golenbock DT, Finberg RW, Kurt-Jones E, Szabo G (2004) Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology 127:1513–1524PubMedCrossRefGoogle Scholar
  30. 30.
    Doyle S, Vaidya S, O’Connell R, Dadgostar H, Dempsey P, Wu T, Rao G, Sun R, Haberland M, Modlin R, Cheng G (2002) IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17:251–263PubMedCrossRefGoogle Scholar
  31. 31.
    Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi GP, Chapman HA, Barton GM (2008) The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:658–662PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fagundes CT, Costa VV, Cisalpino D, Amaral FA, Souza PR, Souza RS, Ryffel B, Vieira LQ, Silva TA, Atrasheuskaya A, Ignatyev G, Sousa LP, Souza DG, Teixeira MM (2011) IFN-gamma production depends on IL-12 and IL-18 combined action and mediates host resistance to dengue virus infection in a nitric oxide-dependent manner. PLoS Negl Tropical Dis 5:e1449CrossRefGoogle Scholar
  33. 33.
    Feuillet V, Medjane S, Mondor I, Demaria O, Pagni PP, Galan JE, Flavell RA, Alexopoulou L (2006) Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proceed Nat Acad Sci USA 103:12487–12492CrossRefGoogle Scholar
  34. 34.
    Flodstrom M, Horwitz MS, Maday A, Balakrishna D, Rodriguez E, Sarvetnick N (2001) A critical role for inducible nitric oxide synthase in host survival following coxsackievirus B4 infection. Virology 281:205–215PubMedCrossRefGoogle Scholar
  35. 35.
    Gamba G, Cavalieri H, Courreges MC, Massouh EJ, Benencia F (2004) Early inhibition of nitric oxide production increases HSV-1 intranasal infection. J Med Virol 73:313–322PubMedCrossRefGoogle Scholar
  36. 36.
    Gao JJ, Zuvanich EG, Xue Q, Horn DL, Silverstein R, Morrison DC (1999) Cutting edge: bacterial DNA and LPS act in synergy in inducing nitric oxide production in RAW 264.7 macrophages. J Immunol 163:4095–4099PubMedGoogle Scholar
  37. 37.
    Gay NJ, Gangloff M (2008) Structure of toll-like receptors. Handbook of experimental pharmacology:181–200Google Scholar
  38. 38.
    Gonzalez JM, Xu H, Ofori E, Elovitz MA (2007) Toll-like receptors in the uterus, cervix, and placenta: is pregnancy an immunosuppressed state? Am J Obst Gynecol 197(296):e291–e296Google Scholar
  39. 39.
    Guidotti LG, McClary H, Loudis JM, Chisari FV (2000) Nitric oxide inhibits hepatitis B virus replication in the livers of transgenic mice. J Experim Med 191:1247–1252CrossRefGoogle Scholar
  40. 40.
    Gupta SK, Deb R, Gaikwad S, Saravanan R, Mohan CM, Dey S (2013) Recombinant flagellin and its cross-talk with lipopolysaccharide–effect on pooled chicken peripheral blood mononuclear cells. Res Veter Sci 95:930–935CrossRefGoogle Scholar
  41. 41.
    Haddadi S, Kim DS, Jasmine H, van der Meer F, Czub M, Abdul-Careem MF (2013) Induction of Toll-like receptor 4 signaling in avian macrophages inhibits infectious laryngotracheitis virus replication in a nitric oxide dependent way. Veter Immunol Immunopathol 155:270–275CrossRefGoogle Scholar
  42. 42.
    Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Briere F, Vlach J, Lebecque S, Trinchieri G, Bates EE (2005) Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 174:2942–2950PubMedCrossRefGoogle Scholar
  43. 43.
    Haynes LM, Moore DD, Kurt-Jones EA, Finberg RW, Anderson LJ, Tripp RA (2001) Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol 75:10730–10737PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    He H, Crippen TL, Farnell MB, Kogut MH (2003) Identification of CpG oligodeoxynucleotide motifs that stimulate nitric oxide and cytokine production in avian macrophage and peripheral blood mononuclear cells. Develop Comp Immunol 27:621–627CrossRefGoogle Scholar
  45. 45.
    He H, Genovese KJ, Nisbet DJ, Kogut MH (2006) Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes. Mol Immunol 43:783–789PubMedCrossRefGoogle Scholar
  46. 46.
    He H, Genovese KJ, Nisbet DJ, Kogut MH (2007) Synergy of CpG oligodeoxynucleotide and double-stranded RNA (poly I:C) on nitric oxide induction in chicken peripheral blood monocytes. Mol Immunol 44:3234–3242PubMedCrossRefGoogle Scholar
  47. 47.
    Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529PubMedCrossRefGoogle Scholar
  48. 48.
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745PubMedCrossRefGoogle Scholar
  49. 49.
    Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200PubMedCrossRefGoogle Scholar
  50. 50.
    Hiraoka Y, Kishimoto C, Takada H, Nakamura M, Kurokawa M, Ochiai H, Shiraki K (1996) Nitric oxide and murine coxsackievirus B3 myocarditis: aggravation of myocarditis by inhibition of nitric oxide synthase. J Am Coll Cardiol 28:1610–1615PubMedCrossRefGoogle Scholar
  51. 51.
    Ho PP, Fontoura P, Ruiz PJ, Steinman L, Garren H (2003) An Immunomodulatory GpG Oligonucleotide for the Treatment of Autoimmunity via the Innate and Adaptive Immune Systems. J Immunol 171:4920–4926PubMedCrossRefGoogle Scholar
  52. 52.
    Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2:835–841PubMedCrossRefGoogle Scholar
  53. 53.
    Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537PubMedCrossRefGoogle Scholar
  54. 54.
    Ischiropoulos H (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophy Res Commun 305:776–783CrossRefGoogle Scholar
  55. 55.
    Jin MS, Lee JO (2008) Structures of the toll-like receptor family and its ligand complexes. Immunity 29:182–191PubMedCrossRefGoogle Scholar
  56. 56.
    Jung K, Ha Y, Ha SK, Han DU, Kim DW, Moon WK, Chae C (2004) Antiviral effect of Saccharomyces cerevisiae beta-glucan to swine influenza virus by increased production of interferon-gamma and nitric oxide. J Veter Med B, Infect Dis Veter Publ Health 51:72–76CrossRefGoogle Scholar
  57. 57.
    Jung K, Gurnani A, Renukaradhya GJ, Saif LJ (2010) Nitric oxide is elicited and inhibits viral replication in pigs infected with porcine respiratory coronavirus but not porcine reproductive and respiratory syndrome virus. Veter Immunol Immunopathol 136:335–339CrossRefGoogle Scholar
  58. 58.
    Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–869PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Karnati HK, Pasupuleti SR, Kandi R, Undi RB, Sahu I, Kannaki TR, Subbiah M, Gutti RK (2015) TLR-4 signalling pathway: MyD88 independent pathway up-regulation in chicken breeds upon LPS treatment. Veter Res Commun 39:73–78CrossRefGoogle Scholar
  60. 60.
    Karupiah G, Harris N (1995) Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites. J Exp Med 181:2171–2179PubMedCrossRefGoogle Scholar
  61. 61.
    Karupiah G, Chen JH, Mahalingam S, Nathan CF, MacMicking JD (1998) Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J Exp Med 188:1541–1546PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kato A, Homma T, Batchelor J, Hashimoto N, Imai S, Wakiguchi H, Saito H, Matsumoto K (2003) Interferon-alpha/beta receptor-mediated selective induction of a gene cluster by CpG oligodeoxynucleotide 2006. BMC Immunol 4:8PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115–122PubMedCrossRefGoogle Scholar
  64. 64.
    Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Keestra AM, van Putten JP (2008) Unique properties of the chicken TLR4/MD-2 complex: selective lipopolysaccharide activation of the MyD88-dependent pathway. J Immunol 181:4354–4362PubMedCrossRefGoogle Scholar
  66. 66.
    Kielian T, Esen N, Bearden ED (2005) Toll-like receptor 2 (TLR2) is pivotal for recognition of S. aureus peptidoglycan but not intact bacteria by microglia. Glia 49:567–576PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Klingstrom J, Akerstrom S, Hardestam J, Stoltz M, Simon M, Falk KI, Mirazimi A, Rottenberg M, Lundkvist A (2006) Nitric oxide and peroxynitrite have different antiviral effects against hantavirus replication and free mature virions. Euro J Immunol 36:2649–2657CrossRefGoogle Scholar
  68. 68.
    Koci MD, Kelley LA, Larsen D, Schultz-Cherry S (2004) Astrovirus-induced synthesis of nitric oxide contributes to virus control during infection. J Virol 78:1564–1574PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Komatsu T, Bi Z, Reiss CS (1996) Interferon-gamma induced type I nitric oxide synthase activity inhibits viral replication in neurons. Journal of neuroimmunology 68:101–108PubMedCrossRefGoogle Scholar
  70. 70.
    Kreil TR, Eibl MM (1996) Nitric oxide and viral infection: NO antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo. Virology 219:304–306PubMedCrossRefGoogle Scholar
  71. 71.
    Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549PubMedCrossRefGoogle Scholar
  72. 72.
    Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484PubMedCrossRefGoogle Scholar
  73. 73.
    Lancaster JR Jr (1994) Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proceed Nat Acad Sci USA 91:8137–8141CrossRefGoogle Scholar
  74. 74.
    Lane TE, Paoletti AD, Buchmeier MJ (1997) Disassociation between the in vitro and in vivo effects of nitric oxide on a neurotropic murine coronavirus. J Virol 71:2202–2210PubMedPubMedCentralGoogle Scholar
  75. 75.
    Laroux FS, Pavlick KP, Hines IN, Kawachi S, Harada H, Bharwani S, Hoffman JM, Grisham MB (2001) Role of nitric oxide in inflammation. Acta Physiol Scandin 173:113–118CrossRefGoogle Scholar
  76. 76.
    Laszlo DJ, Henson PM, Remigio LK, Weinstein L, Sable C, Noble PW, Riches DW (1993) Development of functional diversity in mouse macrophages. Mutual exclusion of two phenotypic states. Am J Pathol 143:587–597PubMedPubMedCentralGoogle Scholar
  77. 77.
    Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190–198PubMedCrossRefGoogle Scholar
  78. 78.
    Leifer CA, Kennedy MN, Mazzoni A, Lee C, Kruhlak MJ, Segal DM (2004) TLR9 is localized in the endoplasmic reticulum prior to stimulation. J Immunol 173:1179–1183PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Leoni V, Gianni T, Salvioli S, Campadelli-Fiume G (2012) Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-kappaB. J Virol 86:6555–6562PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lepoivre M, Fieschi F, Coves J, Thelander L, Fontecave M (1991) Inactivation of ribonucleotide reductase by nitric oxide. Biochem Biophy Res Commun 179:442–448CrossRefGoogle Scholar
  81. 81.
    Lester SN, Li K (2014) Toll-like receptors in antiviral innate immunity. J Mol Biol 426:1246–1264PubMedCrossRefGoogle Scholar
  82. 82.
    Lin YL, Huang YL, Ma SH, Yeh CT, Chiou SY, Chen LK, Liao CL (1997) Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J Virol 71:5227–5235PubMedPubMedCentralGoogle Scholar
  83. 83.
    Liu X, Srinivasan P, Collard E, Grajdeanu P, Zweier JL, Friedman A (2008) Nitric oxide diffusion rate is reduced in the aortic wall. Biophy J 94:1880–1889CrossRefGoogle Scholar
  84. 84.
    Lowenstein CJ, Alley EW, Raval P, Snowman AM, Snyder SH, Russell SW, Murphy WJ (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proceed Nat Acad Sci USA 90:9730–9734CrossRefGoogle Scholar
  85. 85.
    Lowenstein CJ, Hill SL, Lafond-Walker A, Wu J, Allen G, Landavere M, Rose NR, Herskowitz A (1996) Nitric oxide inhibits viral replication in murine myocarditis. J Clin Invest 97:1837–1843PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Matsumoto M, Seya T (2008) TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deli Rev 60:805–812CrossRefGoogle Scholar
  87. 87.
    Mayer B, Hemmens B (1997) Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22:477–481PubMedCrossRefGoogle Scholar
  88. 88.
    Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2:253–258PubMedCrossRefGoogle Scholar
  89. 89.
    Mehta DR, Ashkar AA, Mossman KL (2012) The nitric oxide pathway provides innate antiviral protection in conjunction with the type I interferon pathway in fibroblasts. PloS One 7:e31688PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Meyerhoff RR, Nighot PK, Ali RA, Blikslager AT, Koci MD (2012) Characterization of turkey inducible nitric oxide synthase and identification of its expression in the intestinal epithelium following astrovirus infection. Comp Immunol Microbiol Infect Dis 35:63–69PubMedCrossRefGoogle Scholar
  91. 91.
    Michailidis G, Theodoridis A, Avdi M (2010) Transcriptional profiling of Toll-like receptors in chicken embryos and in the ovary during sexual maturation and in response to Salmonella enteritidis infection. Animal Reprod Sci 122:294–302CrossRefGoogle Scholar
  92. 92.
    Miwa M, Stuehr DJ, Marletta MA, Wishnok JS, Tannenbaum SR (1987) Nitrosation of amines by stimulated macrophages. Carcinogenesis 8:955–958PubMedCrossRefGoogle Scholar
  93. 93.
    Mizel SB, Honko AN, Moors MA, Smith PS, West AP (2003) Induction of macrophage nitric oxide production by Gram-negative flagellin involves signaling via heteromeric Toll-like receptor 5/Toll-like receptor 4 complexes. J Immunol 170:6217–6223PubMedCrossRefGoogle Scholar
  94. 94.
    Mogensen TH, Paludan SR (2005) Reading the viral signature by Toll-like receptors and other pattern recognition receptors. J Mol Med (Berl) 83:180–192CrossRefGoogle Scholar
  95. 95.
    Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J Off Publ Feder Am Soc Exp Biol 6:3051–3064Google Scholar
  96. 96.
    Nazli A, Kafka JK, Ferreira VH, Anipindi V, Mueller K, Osborne BJ, Dizzell S, Chauvin S, Mian MF, Ouellet M, Tremblay MJ, Mossman KL, Ashkar AA, Kovacs C, Bowdish DM, Snider DP, Kaul R, Kaushic C (2013) HIV-1 gp120 induces TLR2- and TLR4-mediated innate immune activation in human female genital epithelium. J Immunol 191:4246–4258PubMedCrossRefGoogle Scholar
  97. 97.
    Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR (1992) DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proceed Nat Acad Sci USA 89:3030–3034CrossRefGoogle Scholar
  98. 98.
    Noda S, Tanaka K, Sawamura S, Sasaki M, Matsumoto T, Mikami K, Aiba Y, Hasegawa H, Kawabe N, Koga Y (2001) Role of nitric oxide synthase type 2 in acute infection with murine cytomegalovirus. J Immunol 166:3533–3541PubMedCrossRefGoogle Scholar
  99. 99.
    O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Rev Immunol 7:353–364CrossRefGoogle Scholar
  100. 100.
    O’Neill LA (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226:10–18PubMedCrossRefGoogle Scholar
  101. 101.
    Ohto U, Shibata T, Tanji H, Ishida H, Krayukhina E, Uchiyama S, Miyake K, Shimizu T (2015) Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. NatureGoogle Scholar
  102. 102.
    Oosting M, Cheng SC, Bolscher JM, Vestering-Stenger R, Plantinga TS, Verschueren IC, Arts P, Garritsen A, van Eenennaam H, Sturm P, Kullberg BJ, Hoischen A, Adema GJ, van der Meer JW, Netea MG, Joosten LA (2014) Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proceed Nat Acad Sci USA 111:E4478–E4484CrossRefGoogle Scholar
  103. 103.
    Pamer EG (2009) Tipping the balance in favor of protective immunity during influenza virus infection. Proceed Nat Acad Sci USA 106:4961–4962CrossRefGoogle Scholar
  104. 104.
    Persichini T, Colasanti M, Fraziano M, Colizzi V, Medana C, Polticelli F, Venturini G, Ascenzi P (1999) Nitric oxide inhibits the HIV-1 reverse transcriptase activity. Biochem Biophy Res Commun 258:624–627CrossRefGoogle Scholar
  105. 105.
    Pertile TL, Karaca K, Sharma JM, Walser MM (1996) An antiviral effect of nitric oxide: inhibition of reovirus replication. Avian Dis 40:342–348PubMedCrossRefGoogle Scholar
  106. 106.
    Philbin VJ, Iqbal M, Boyd Y, Goodchild MJ, Beal RK, Bumstead N, Young J, Smith AL (2005) Identification and characterization of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunology 114:507–521PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Poonia B, Charan S (2005) Early and transient induction of nitric oxide (NO) in infectious bursal disease virus infection is T-cell dependent: a study in cyclosporin-A treated chicken-model. Indian J Exp Biol 43:192–196PubMedGoogle Scholar
  108. 108.
    Raetz M, Kibardin A, Sturge CR, Pifer R, Li H, Burstein E, Ozato K, Larin S, Yarovinsky F (2013) Cooperation of TLR12 and TLR11 in the IRF8-dependent IL-12 response to Toxoplasma gondii profilin. J Immunol 191:4818–4827PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Rallabhandi P, Bell J, Boukhvalova MS, Medvedev A, Lorenz E, Arditi M, Hemming VG, Blanco JC, Segal DM, Vogel SN (2006) Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J Immunol 177:322–332PubMedCrossRefGoogle Scholar
  110. 110.
    Rankin R, Pontarollo R, Ioannou X, Krieg AM, Hecker R, Babiuk LA, van Drunen Littel-van den Hurk S (2001) CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Anti Nucl Acid Drug Dev 11:333–340CrossRefGoogle Scholar
  111. 111.
    Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR (2002) Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proceed Nat Acad Sci USA 99:2281–2286CrossRefGoogle Scholar
  112. 112.
    Regev-Shoshani G, Vimalanathan S, McMullin B, Road J, Av-Gay Y, Miller C (2013) Gaseous nitric oxide reduces influenza infectivity in vitro. Nitric Oxide Biol Chem Off J Nitr Oxide Soc 31:48–53CrossRefGoogle Scholar
  113. 113.
    Rimmelzwaan GF, Baars MM, de Lijster P, Fouchier RA, Osterhaus AD (1999) Inhibition of influenza virus replication by nitric oxide. J Virol 73:8880–8883PubMedPubMedCentralGoogle Scholar
  114. 114.
    Rolland A, Jouvin-Marche E, Viret C, Faure M, Perron H, Marche PN (2006) The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol 176:7636–7644PubMedCrossRefGoogle Scholar
  115. 115.
    Salazar Gonzalez RM, Shehata H, O’Connell MJ, Yang Y, Moreno-Fernandez ME, Chougnet CA, Aliberti J (2014) Toxoplasma gondii- derived profilin triggers human toll-like receptor 5-dependent cytokine production. J Innate Immun 6:685–694PubMedCrossRefGoogle Scholar
  116. 116.
    Sanders SP, Siekierski ES, Porter JD, Richards SM, Proud D (1998) Nitric oxide inhibits rhinovirus-induced cytokine production and viral replication in a human respiratory epithelial cell line. J Virol 72:934–942PubMedPubMedCentralGoogle Scholar
  117. 117.
    Sasai M, Yamamoto M (2013) Pathogen recognition receptors: ligands and signaling pathways by Toll-like receptors. Int Rev Immunol 32:116–133PubMedCrossRefGoogle Scholar
  118. 118.
    Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T, Katsuki M, Noguchi S, Tanaka N, Taniguchi T (2000) Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13:539–548PubMedCrossRefGoogle Scholar
  119. 119.
    Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, Takahashi T, Imaizumi H, Asai Y, Kuroki Y (2003) Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol 171:417–425PubMedCrossRefGoogle Scholar
  120. 120.
    Saura M, Zaragoza C, McMillan A, Quick RA, Hohenadl C, Lowenstein JM, Lowenstein CJ (1999) An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 10:21–28PubMedCrossRefGoogle Scholar
  121. 121.
    Schenk M, Belisle JT, Modlin RL (2009) TLR2 looks at lipoproteins. Immunity 31:847–849PubMedCrossRefGoogle Scholar
  122. 122.
    Schnare M, Holt AC, Takeda K, Akira S, Medzhitov R (2000) Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr Biol CB 10:1139–1142PubMedCrossRefGoogle Scholar
  123. 123.
    Sekkai D, Aillet F, Israel N, Lepoivre M (1998) Inhibition of NF-kappaB and HIV-1 long terminal repeat transcriptional activation by inducible nitric oxide synthase 2 activity. J Biol Chem 273:3895–3900PubMedCrossRefGoogle Scholar
  124. 124.
    Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. The Journal of experimental medicine 189:1777–1782PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Snell JC, Chernyshev O, Gilbert DL, Colton CA (1997) Polyribonucleotides induce nitric oxide production by human monocyte-derived macrophages. J Leukocyte Biol 62:369–373PubMedGoogle Scholar
  126. 126.
    Stark JM, Khan AM, Chiappetta CL, Xue H, Alcorn JL, Colasurdo GN (2005) Immune and functional role of nitric oxide in a mouse model of respiratory syncytial virus infection. J Infect Dis 191:387–395PubMedCrossRefGoogle Scholar
  127. 127.
    Tada H, Nemoto E, Shimauchi H, Watanabe T, Mikami T, Matsumoto T, Ohno N, Tamura H, Shibata K, Akashi S, Miyake K, Sugawara S, Takada H (2002) Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol 46:503–512PubMedCrossRefGoogle Scholar
  128. 128.
    Takeda K, Akira S (2004) TLR signaling pathways. Sem Immunol 16:3–9CrossRefGoogle Scholar
  129. 129.
    Takhampunya R, Padmanabhan R, Ubol S (2006) Antiviral action of nitric oxide on dengue virus type 2 replication. J General Virol 87:3003–3011CrossRefGoogle Scholar
  130. 130.
    Tamir S, Burney S, Tannenbaum SR (1996) DNA damage by nitric oxide. Chem Res Toxicol 9:821–827PubMedCrossRefGoogle Scholar
  131. 131.
    Tamir S, deRojas-Walker T, Wishnok JS, Tannenbaum SR (1996) DNA damage and genotoxicity by nitric oxide. Methods Enzymol 269:230–243PubMedCrossRefGoogle Scholar
  132. 132.
    Tangeras LH, Stodle GS, Olsen GD, Leknes AH, Gundersen AS, Skei B, Vikdal AJ, Ryan L, Steinkjer B, Myklebost MF, Langaas M, Austgulen R, Iversen AC (2013) PP042. Cell surface toll-like receptors in primary first trimester trophoblasts. Pregnan Hyperten 3:81–82Google Scholar
  133. 133.
    Tanimura N, Saitoh S, Matsumoto F, Akashi-Takamura S, Miyake K (2008) Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem Biophy Res Commun 368:94–99CrossRefGoogle Scholar
  134. 134.
    Tanji H, Ohto U, Shibata T, Miyake K, Shimizu T (2013) Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 339:1426–1429PubMedCrossRefGoogle Scholar
  135. 135.
    Tapping RI (2009) Innate immune sensing and activation of cell surface Toll-like receptors. Semin Immunol 21:175–184PubMedCrossRefGoogle Scholar
  136. 136.
    Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW (2008) Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genom 9:62CrossRefGoogle Scholar
  137. 137.
    Thapa S, Cader MS, Murugananthan K, Nagy E, Sharif S, Czub M, Abdul-Careem MF (2015) In ovo delivery of CpG DNA reduces avian infectious laryngotracheitis virus induced mortality and morbidity. Viruses 7:1832–1852PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Thapa S, Nagy E, Abdul-Careem MF (2015) In ovo delivery of Toll-like receptor 2 ligand, lipoteichoic acid induces pro-inflammatory mediators reducing post-hatch infectious laryngotracheitis virus infection. Veter Immunol Immunopathol 164:170–178CrossRefGoogle Scholar
  139. 139.
    Thomas PG, Carter MR, Atochina O, Da’Dara AA, Piskorska D, McGuire E, Harn DA (2003) Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J Immunol 171:5837–5841PubMedCrossRefGoogle Scholar
  140. 140.
    Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA (2011) Pattern recognition receptors and the innate immune response to viral infection. Viruses 3:920–940PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Tseng PH, Matsuzawa A, Zhang W, Mino T, Vignali DA, Karin M (2010) Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature Immunol 11:70–75CrossRefGoogle Scholar
  142. 142.
    Uematsu S, Akira S (2007) Toll-like receptors and Type I interferons. The Journal of biological chemistry 282:15319–15323PubMedCrossRefGoogle Scholar
  143. 143.
    Villanueva C, Giulivi C (2010) Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radical Biol Med 49:307–316CrossRefGoogle Scholar
  144. 144.
    Vollmer J, Krieg AM (2009) Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Del Rev 61:195–204CrossRefGoogle Scholar
  145. 145.
    West AP, Koblansky AA, Ghosh S (2006) Recognition and signaling by toll-like receptors. Ann Rev Cell Dev Biol 22:409–437CrossRefGoogle Scholar
  146. 146.
    Xing Z, Schat KA (2000) Inhibitory effects of nitric oxide and gamma interferon on in vitro and in vivo replication of Marek’s disease virus. J Virol 74:3605–3612PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643PubMedCrossRefGoogle Scholar
  148. 148.
    Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ (2005) Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics 56:743–753PubMedCrossRefGoogle Scholar
  149. 149.
    Zahringer U, Lindner B, Inamura S, Heine H, Alexander C (2008) TLR2 - promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 213:205–224PubMedCrossRefGoogle Scholar
  150. 150.
    Zaki MH, Okamoto, T., Sawa, T., Fujii, S. and Akaike, T. (2007) Nitrative stress in respiratory inflammation caused by influenza virus infection. . Clin Exp Allergy Rev:8Google Scholar
  151. 151.
    Zell R, Markgraf R, Schmidtke M, Gorlach M, Stelzner A, Henke A, Sigusch HH, Gluck B (2004) Nitric oxide donors inhibit the coxsackievirus B3 proteinases 2A and 3C in vitro, virus production in cells, and signs of myocarditis in virus-infected mice. Med Microbiol Immunol 193:91–100PubMedCrossRefGoogle Scholar
  152. 152.
    Zughaier SM, Zimmer SM, Datta A, Carlson RW, Stephens DS (2005) Differential induction of the toll-like receptor 4-MyD88-dependent and -independent signaling pathways by endotoxins. Infect Immun 73:2940–2950PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Mohamed Sarjoon Abdul-Cader
    • 1
  • Aruna Amarasinghe
    • 1
  • Mohamed Faizal Abdul-Careem
    • 1
  1. 1.Department of Ecosystem and Public Health, Faculty of Veterinary MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations