Advertisement

Archives of Virology

, Volume 161, Issue 3, pp 521–528 | Cite as

Activation of Toll-like receptor 3 inhibits Marek’s disease virus infection in chicken embryo fibroblast cells

  • Xuming Hu
  • Haitao Zou
  • Aijian QinEmail author
  • Kun Qian
  • Hongxia Shao
  • Jianqiang Ye
Original Article

Abstract

Toll-like receptor 3 (TLR3) is a critical component of the innate immune system against viral infection and controls the activation of adaptive immunity. The role of TLR3 in Marek’s disease virus (MDV) infection is not clear. In this study, we found that the abundance of TLR3 mRNA was significantly higher in chicken embryo fibroblast cells (CEF) infected with MDV than in a control group. Activated TLR3 signaling via TLR3 ligand stimulation inhibited replication of the RB1B strain of MDV in CEF cells. In contrast, CEF cells transfected with TLR3 siRNA promoted RB1B infection and replication. However, treatment with other TLR ligands, whether stimulatory (LPS, imiquimod and CpG) or inhibitory (TLR2/4 inhibitor and/or MyD88 inhibitor), had little effect on RB1B infection and replication. In addition, we found that the expression trend of TLR3 mRNA in RB1B-infected CEF cells was similar to that of mdv1-mir-M4-5p (a functional ortholog of oncogenic miR-155 encoded by MDV). Inconsistent with this, the TLR3 protein level was sharply reduced in RB1B-infected CEF cells at 96 hpi, while there was an at least 200-fold increase in miR-M4-5p at the same time point. Additionally, CEF cells transfected with an mdv1-mir-M4-5p mimic promoted RB1B infection and replication, while an mdv1-mir-M4-5p inhibitor inhibited RB1B infection and replication. Similar results were observed in CEF cells transfected with a gga-miR-155 mimic or inhibitor. These findings suggest that TLR3 and MDV-encoded miRNAs might be involved in MDV infection.

Keywords

Imiquimod TLR3 mRNA Chicken Embryo Fibroblast TLR3 mRNA Expression Chicken Embryo Fibroblast Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31472192) and the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Science.

References

  1. 1.
    Abdul-Careem MF, Haq K, Shanmuganathan S, Read LR, Schat KA, Heidari M, Sharif S (2009) Induction of innate host responses in the lungs of chickens following infection with a very virulent strain of Marek’s disease virus. Virology 393:250–257CrossRefPubMedGoogle Scholar
  2. 2.
    Ahmad H, Gubbels R, Ehlers E, Meyer F, Waterbury T, Lin R, Zhang L (2011) Kaposi sarcoma-associated herpesvirus degrades cellular Toll-interleukin-1 receptor domain-containing adaptor-inducing beta-interferon (TRIF). J Biol Chem 286:7865–7872PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–263CrossRefPubMedGoogle Scholar
  4. 4.
    Cullen BR (2009) Viral and cellular messenger RNA targets of viral microRNAs. Nature 457:421–425PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Davey GM, Wojtasiak M, Proietto AI, Carbone FR, Heath WR, Bedoui S (2010) Cutting edge: priming of CD8 T cell immunity to herpes simplex virus type 1 requires cognate TLR3 expression in vivo. J Immunol 184:2243–2246CrossRefPubMedGoogle Scholar
  6. 6.
    Deng X, Li X, Shen Y, Qiu Y, Shi Z, Shao D, Jin Y, Chen H, Ding C, Li L, Chen P, Ma Z (2010) The Meq oncoprotein of Marek’s disease virus interacts with p53 and inhibits its transcriptional and apoptotic activities. Virol J 7:348PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT, Braich R, Manoharan M, Soutschek J, Ohler U, Cullen BR (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450:1096–1099PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Heidari M, Sarson AJ, Huebner M, Sharif S, Kireev D, Zhou H (2010) Marek’s disease virus-induced immunosuppression: array analysis of chicken immune response gene expression profiling. Viral Immunol 23:309–319CrossRefPubMedGoogle Scholar
  9. 9.
    Hicks JA, Liu HC (2013) Current state of Marek’s disease virus microRNA research. Avian Dis 57:332–339CrossRefPubMedGoogle Scholar
  10. 10.
    Hu X, Qin A, Qian K, Shao H, Yu C, Xu W, Miao J (2012) Analysis of protein expression profiles in the thymus of chickens infected with Marek’s disease virus. Virol J 9:256PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Hu X, Xu W, Qin A, Wu G, Qian K, Shao H, Ye J (2014) Marek’s disease virus may interfere with T cell immunity by TLR3 signals. Vet Res Commun 38:149–156CrossRefPubMedGoogle Scholar
  12. 12.
    Hu X, Ye J, Qin A, Zou H, Shao H, Qian K (2015) Both microRNA-155 and virus-encoded MiR-155 ortholog regulate TLR3 expression. PLoS ONE 10:e0126012PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Jarosinski KW, Hunt HD, Osterrieder N (2010) Down-regulation of MHC class I by the Marek’s disease virus (MDV) UL49.5 gene product mildly affects virulence in a haplotype-specific fashion. Virology 405:457–463CrossRefPubMedGoogle Scholar
  14. 14.
    Jiang J, Lee EJ, Schmittgen TD (2006) Increased expression of microRNA-155 in Epstein–Barr virus transformed lymphoblastoid cell lines. Genes Chromosomes Cancer 45:103–106CrossRefPubMedGoogle Scholar
  15. 15.
    Jie H, Lian L, Qu LJ, Zheng JX, Hou ZC, Xu GY, Song JZ, Yang N (2013) Differential expression of Toll-like receptor genes in lymphoid tissues between Marek’s disease virus-infected and noninfected chickens. Poultry Sci 92:645–654CrossRefGoogle Scholar
  16. 16.
    Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJ, Yamasaki S, Itaya M, Pan Y, Appukuttan B, Gibbs D, Yang Z, Kariko K, Ambati BK, Wilgus TA, DiPietro LA, Sakurai E, Zhang K, Smith JR, Taylor EW, Ambati J (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Lafaille FG, Pessach IM, Zhang SY, Ciancanelli MJ, Herman M, Abhyankar A, Ying SW, Keros S, Goldstein PA, Mostoslavsky G, Ordovas-Montanes J, Jouanguy E, Plancoulaine S, Tu E, Elkabetz Y, Al-Muhsen S, Tardieu M, Schlaeger TM, Daley GQ, Abel L, Casanova JL, Studer L, Notarangelo LD (2012) Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491:769–773PubMedCentralPubMedGoogle Scholar
  18. 18.
    Li Y, Sun A, Su S, Zhao P, Cui Z, Zhu H (2011) Deletion of the Meq gene significantly decreases immunosuppression in chickens caused by pathogenic Marek’s disease virus. Virol J 8:2PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Linnstaedt SD, Gottwein E, Skalsky RL, Luftig MA, Cullen BR (2010) Virally induced cellular microRNA miR-155 plays a key role in B-cell immortalization by Epstein–Barr virus. J Virol 84:11670–11678PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Lu F, Weidmer A, Liu CG, Volinia S, Croce CM, Lieberman PM (2008) Epstein–Barr virus-induced miR-155 attenuates NF-kappaB signaling and stabilizes latent virus persistence. J Virol 82:10436–10443PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Meyer F, Ehlers E, Steadman A, Waterbury T, Cao M, Zhang L (2013) TLR-TRIF pathway enhances the expression of KSHV replication and transcription activator. J Biol Chem 288:20435–20442PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Morgan R, Anderson A, Bernberg E, Kamboj S, Huang E, Lagasse G, Isaacs G, Parcells M, Meyers BC, Green PJ, Burnside J (2008) Sequence conservation and differential expression of Marek’s disease virus microRNAs. J Virol 82:12213–12220PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Murphy E, Vanicek J, Robins H, Shenk T, Levine AJ (2008) Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci USA 105:5453–5458PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Osterrieder N, Kamil JP, Schumacher D, Tischer BK, Trapp S (2006) Marek’s disease virus: from miasma to model. Nat Rev Microbiol 4:283–294CrossRefPubMedGoogle Scholar
  25. 25.
    Parvizi P, Mallick AI, Haq K, Haghighi HR, Orouji S, Thanthrige-Don N, St Paul M, Brisbin JT, Read LR, Behboudi S, Sharif S (2012) A Toll-like receptor 3 ligand enhances protective effects of vaccination against Marek’s disease virus and hinders tumor development in chickens. Viral Immunol 25:394–401CrossRefPubMedGoogle Scholar
  26. 26.
    Rivas C, Aaronson SA, Munoz-Fontela C (2010) Dual role of p53 in innate antiviral immunity. Viruses 2:298–313PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R (2001) Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2:947–950CrossRefPubMedGoogle Scholar
  28. 28.
    Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljestrom P, Reis e Sousa C (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887–892CrossRefPubMedGoogle Scholar
  29. 29.
    Shatz M, Menendez D, Resnick MA (2012) The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells. Cancer Res 72:3948–3957PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81:12836–12845PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Strassheim S, Stik G, Rasschaert D, Laurent S (2012) mdv1-miR-M7-5p, located in the newly identified first intron of the latency-associated transcript of Marek’s disease virus, targets the immediate-early genes ICP4 and ICP27. J Gen Virol 93:1731–1742CrossRefPubMedGoogle Scholar
  32. 32.
    Tabiasco J, Devevre E, Rufer N, Salaun B, Cerottini JC, Speiser D, Romero P (2006) Human effector CD8+ T lymphocytes express TLR3 as a functional coreceptor. J Immunol 177:8708–8713CrossRefPubMedGoogle Scholar
  33. 33.
    Taura M, Eguma A, Suico MA, Shuto T, Koga T, Komatsu K, Komune T, Sato T, Saya H, Li JD, Kai H (2008) p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines. Mol Cell Biol 28:6557–6567PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Taura M, Fukuda R, Suico MA, Eguma A, Koga T, Shuto T, Sato T, Morino-Koga S, Kai H (2010) TLR3 induction by anticancer drugs potentiates poly I:C-induced tumor cell apoptosis. Cancer Sci 101:1610–1617CrossRefPubMedGoogle Scholar
  35. 35.
    West J, Damania B (2008) Upregulation of the TLR3 pathway by Kaposi’s sarcoma-associated herpesvirus during primary infection. J Virol 82:5440–5449PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Xu S, Xue C, Li J, Bi Y, Cao Y (2011) Marek’s disease virus type 1 microRNA miR-M3 suppresses cisplatin-induced apoptosis by targeting Smad2 of the transforming growth factor beta signal pathway. J Virol 85:276–285PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Yao Y, Zhao Y, Smith LP, Lawrie CH, Saunders NJ, Watson M, Nair V (2009) Differential expression of microRNAs in Marek’s disease virus-transformed T-lymphoma cell lines. J Gen Virol 90:1551–1559CrossRefPubMedGoogle Scholar
  38. 38.
    Yu ZH, Teng M, Sun AJ, Yu LL, Hu B, Qu LH, Ding K, Cheng XC, Liu JX, Cui ZZ, Zhang GP, Luo J (2014) Virus-encoded miR-155 ortholog is an important potential regulator but not essential for the development of lymphomas induced by very virulent Marek’s disease virus. Virology 448:55–64CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A, Picard C, Chapgier A, Plancoulaine S, Titeux M, Cognet C, von Bernuth H, Ku CL, Casrouge A, Zhang XX, Barreiro L, Leonard J, Hamilton C, Lebon P, Heron B, Vallee L, Quintana-Murci L, Hovnanian A, Rozenberg F, Vivier E, Geissmann F, Tardieu M, Abel L, Casanova JL (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522–1527CrossRefPubMedGoogle Scholar
  40. 40.
    Zhao Y, Yao Y, Xu H, Lambeth L, Smith LP, Kgosana L, Wang X, Nair V (2009) A functional MicroRNA-155 ortholog encoded by the oncogenic Marek’s disease virus. J Virol 83:489–492PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Zhao Y, Xu H, Yao Y, Smith LP, Kgosana L, Green J, Petherbridge L, Baigent SJ, Nair V (2011) Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas. PLoS Pathog 7:e1001305PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Xuming Hu
    • 1
    • 2
  • Haitao Zou
    • 2
  • Aijian Qin
    • 1
    • 2
    • 3
    Email author
  • Kun Qian
    • 1
    • 2
    • 3
  • Hongxia Shao
    • 1
    • 2
    • 3
  • Jianqiang Ye
    • 1
    • 3
  1. 1.Ministry of Education Key Lab for Avian Preventive MedicineYangzhou UniversityYangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Jiangsu Preventive Veterinary MedicineYangzhou UniversityYangzhouPeople’s Republic of China
  3. 3.Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouPeople’s Republic of China

Personalised recommendations