Archives of Virology

, Volume 161, Issue 2, pp 307–316 | Cite as

Amino acid residues at positions 222 and 227 of the hemagglutinin together with the neuraminidase determine binding of H5 avian influenza viruses to sialyl Lewis X

  • Takahiro Hiono
  • Masatoshi Okamatsu
  • Manabu Igarashi
  • Ryan McBride
  • Robert P. de Vries
  • Wenjie Peng
  • James C. Paulson
  • Yoshihiro Sakoda
  • Hiroshi KidaEmail author
Original Article


Influenza viruses isolated from ducks are rarely able to infect chickens; it is therefore postulated that these viruses need to adapt in some way to be able to be transmitted to chickens in nature. Previous studies revealed that sialyl Lewis X (3′SLeX), which is fucosylated α2,3 sialoside, was predominantly detected on the epithelial cells of the chicken trachea, whereas this glycan structure is not found in the duck intestinal tract. To clarify the mechanisms of the interspecies transmission of influenza viruses between ducks and chickens, we compared the receptor specificity of low-pathogenic avian influenza viruses isolated from these two species. Glycan-binding analysis of the recombinant hemagglutinin (HA) of a chicken influenza virus, A/chicken/Ibaraki/1/2005 (H5N2), revealed a binding preference to α1,3 fucosylated sialosides. On the other hand, the HA of a duck influenza virus, A/duck/Mongolia/54/2001 (H5N2) (Dk/MNG), particularly bound to non-fucosylated α2,3 sialosides such as 3′-sialyllactosamine (3′SLacNAc). Computational analysis along with binding analysis of the mutant HAs revealed that this glycan-binding specificity of the HA was determined by amino acid residues at positions 222 and 227. Inconsistent with the glycan-binding specificity of the recombinant HA protein, virions of Dk/MNG bound to both 3′SLacNAc and 3′SLeX. Glycan-binding analysis in the presence of a neuraminidase (NA) inhibitor revealed that the NA conferred binding to 3′SLeX to virions of Dk/MNG. The present results reveal the molecular basis of the interaction between fucosylated α2,3 sialosides and influenza viruses.


Influenza Influenza Virus Avian Influenza Virus Glycan Structure Amino Acid Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Ms. Yuki Maki and Ms. Ana L. Tran-Crie for their kind help in organizing this collaborative effort. We thank Drs. Masanori Kobayashi and Keiichi Taniguchi of Shionogi & Co. Ltd., for providing peramivir and their technical advice. The present work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (grant number 26850178 to M.O.) and by the Program for Leading Graduate Schools from JSPS (grant number F01). This work was funded in part by the National Institutes of Health Grant R56 (grant number AI099274 to J.C.P). Several glycans used for the HA binding assays were provided by the Consortium for Functional Glycomics ( funded by National Institute of General Medical Sciences (NIGMS) (grant number GM62116 to J.C.P.). R.P.d.V. is a recipient of Rubicon and VENI grants from the Netherlands Organization for Scientific Research (NWO). T.H. is supported by JSPS Research Fellowships for young scientists.

Supplementary material

705_2015_2660_MOESM1_ESM.xlsx (695 kb)
Supplementary material 1 (XLSX 695 kb)


  1. 1.
    Kida H (2008) Ecology of influenza viruses in nature, birds, and humans. Global Environ Res 12:9–14Google Scholar
  2. 2.
    Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–1541CrossRefPubMedGoogle Scholar
  3. 3.
    Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428PubMedCentralPubMedGoogle Scholar
  4. 4.
    Yamada S, Shinya K, Takada A, Ito T, Suzuki T, Suzuki Y, Le QM, Ebina M, Kasai N, Kida H, Horimoto T, Rivailler P, Chen LM, Donis RO, Kawaoka Y (2012) Adaptation of a duck influenza A virus in quail. J Virol 86:1411–1420PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Paulson JC, de Vries RP (2013) H5N1 receptor specificity as a factor in pandemic risk. Virus Res 178:99–113CrossRefPubMedGoogle Scholar
  6. 6.
    Shichinohe S, Okamatsu M, Sakoda Y, Kida H (2013) Selection of H3 avian influenza viruses with SAα2,6Gal receptor specificity in pigs. Virology 444:404–408CrossRefPubMedGoogle Scholar
  7. 7.
    Lamb RA, Choppin PW (1983) The gene structure and replication of influenza virus. Annu Rev Biochem 52:467–506CrossRefPubMedGoogle Scholar
  8. 8.
    Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569CrossRefPubMedGoogle Scholar
  9. 9.
    Gong J, Xu W, Zhang J (2007) Structure and functions of influenza virus neuraminidase. Curr Med Chem 14:113–122CrossRefPubMedGoogle Scholar
  10. 10.
    Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373CrossRefPubMedGoogle Scholar
  11. 11.
    Rogers GN, D’Souza BL (1989) Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173:317–322CrossRefPubMedGoogle Scholar
  12. 12.
    Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373PubMedCentralPubMedGoogle Scholar
  13. 13.
    Ito T, Suzuki Y, Suzuki T, Takada A, Horimoto T, Wells K, Kida H, Otsuki K, Kiso M, Ishida H, Kawaoka Y (2000) Recognition of N-glycolylneuraminic acid linked to galactose by the alpha2,3 linkage is associated with intestinal replication of influenza A virus in ducks. J Virol 74:9300–9305PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436CrossRefPubMedGoogle Scholar
  15. 15.
    Kida H, Yanagawa R (1979) Isolation and characterization of influenza a viruses from wild free-flying ducks in Hokkaido, Japan. Zentralbl Bakteriol Orig A 244:135–143PubMedGoogle Scholar
  16. 16.
    Kida H, Yanagawa R, Matsuoka Y (1980) Duck influenza lacking evidence of disease signs and immune response. Infect Immun 30:547–553PubMedCentralPubMedGoogle Scholar
  17. 17.
    Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus AD (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79:2814–2822PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Matrosovich MN, Gambaryan AS, Teneberg S, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS, Karlsson KA (1997) Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233:224–234CrossRefPubMedGoogle Scholar
  19. 19.
    Liu M, Guan Y, Peiris M, He S, Webby RJ, Perez D, Webster RG (2003) The quest of influenza A viruses for new hosts. Avian Dis 47:849–856CrossRefPubMedGoogle Scholar
  20. 20.
    Gambaryan AS, Tuzikov AB, Pazynina GV, Desheva JA, Bovin NV, Matrosovich MN, Klimov AI (2008) 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry. Virol J 5:85PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Hiono T, Okamatsu M, Nishihara S, Takase-Yoden S, Sakoda Y, Kida H (2014) A chicken influenza virus recognizes fucosylated α2,3 sialoglycan receptors on the epithelial cells lining upper respiratory tracts of chickens. Virology 456–457:131–138CrossRefPubMedGoogle Scholar
  22. 22.
    Xiong X, Tuzikov A, Coombs PJ, Martin SR, Walker PA, Gamblin SJ, Bovin N, Skehel JJ (2013) Recognition of sulphated and fucosylated receptor sialosides by A/Vietnam/1194/2004 (H5N1) influenza virus. Virus Res 178:12–14CrossRefPubMedGoogle Scholar
  23. 23.
    Gambaryan A, Yamnikova S, Lvov D, Tuzikov A, Chinarev A, Pazynina G, Webster R, Matrosovich M, Bovin N (2005) Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology 334:276–283CrossRefPubMedGoogle Scholar
  24. 24.
    Gambaryan AS, Matrosovich TY, Philipp J, Munster VJ, Fouchier RA, Cattoli G, Capua I, Krauss SL, Webster RG, Banks J, Bovin NV, Klenk HD, Matrosovich MN (2012) Receptor-binding profiles of H7 subtype influenza viruses in different host species. J Virol 86:4370–4379PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Yang G, Li S, Blackmon S, Ye J, Bradley KC, Cooley J, Smith D, Hanson L, Cardona C, Steinhauer DA, Webby R, Liao M, Wan XF (2013) Mutation tryptophan to leucine at position 222 of haemagglutinin could facilitate H3N2 influenza A virus infection in dogs. J Gen Virol 94:2599–2608PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78:12665–12667PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Ohuchi M, Asaoka N, Sakai T, Ohuchi R (2006) Roles of neuraminidase in the initial stage of influenza virus infection. Microbes Infect 8:1287–1293CrossRefPubMedGoogle Scholar
  28. 28.
    de Graaf M, Fouchier RA (2014) Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J 33:823–841PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Heider A, Mochalova L, Harder T, Tuzikov A, Bovin N, Wolff T, Matrosovich M, Schweiger B (2015) Alterations in hemagglutinin receptor-binding specificity accompany the emergence of highly pathogenic avian influenza viruses. J Virol 89:5395–5405PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Okamatsu M, Saito T, Yamamoto Y, Mase M, Tsuduku S, Nakamura K, Tsukamoto K, Yamaguchi S (2007) Low pathogenicity H5N2 avian influenza outbreak in Japan during the 2005–2006. Vet Microbiol 124:35–46CrossRefPubMedGoogle Scholar
  31. 31.
    Sakoda Y, Sugar S, Batchluun D, Erdene-Ochir TO, Okamatsu M, Isoda N, Soda K, Takakuwa H, Tsuda Y, Yamamoto N, Kishida N, Matsuno K, Nakayama E, Kajihara M, Yokoyama A, Takada A, Sodnomdarjaa R, Kida H (2010) Characterization of H5N1 highly pathogenic avian influenza virus strains isolated from migratory waterfowl in Mongolia on the way back from the southern Asia to their northern territory. Virology 406:88–94CrossRefPubMedGoogle Scholar
  32. 32.
    Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA 97:6108–6113PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289CrossRefPubMedGoogle Scholar
  34. 34.
    Xu R, de Vries RP, Zhu X, Nycholat CM, McBride R, Yu W, Paulson JC, Wilson IA (2013) Preferential recognition of avian-like receptors in human influenza A H7N9 viruses. Science 342:1230–1235PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci USA 99:13419–13424PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    de Vries RP, de Vries E, Bosch BJ, de Groot RJ, Rottier PJ, de Haan CA (2010) The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity. Virology 403:17–25CrossRefPubMedGoogle Scholar
  37. 37.
    de Vries RP, Zhu X, McBride R, Rigter A, Hanson A, Zhong G, Hatta M, Xu R, Yu W, Kawaoka Y, de Haan CA, Wilson IA, Paulson JC (2014) Hemagglutinin receptor specificity and structural analyses of respiratory droplet-transmissible H5N1 viruses. J Virol 88:768–773PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Peng W, Pranskevich J, Nycholat C, Gilbert M, Wakarchuk W, Paulson JC, Razi N (2012) Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans. Glycobiology 22:1453–1464PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Nycholat CM, McBride R, Ekiert DC, Xu R, Rangarajan J, Peng W, Razi N, Gilbert M, Wakarchuk W, Wilson IA, Paulson JC (2012) Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza A virus hemagglutinins. Angew Chem Int Ed Engl 51:4860–4863PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Yamada S, Suzuki Y, Suzuki T, Le MQ, Nidom CA, Sakai-Tagawa Y, Muramoto Y, Ito M, Kiso M, Horimoto T, Shinya K, Sawada T, Usui T, Murata T, Lin Y, Hay A, Haire LF, Stevens DJ, Russell RJ, Gamblin SJ, Skehel JJ, Kawaoka Y (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444:378–382CrossRefPubMedGoogle Scholar
  41. 41.
    Motohashi Y, Igarashi M, Okamatsu M, Noshi T, Sakoda Y, Yamamoto N, Ito K, Yoshida R, Kida H (2013) Antiviral activity of stachyflin on influenza A viruses of different hemagglutinin subtypes. Virol J 10:118PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Liu J, Stevens DJ, Haire LF, Walker PA, Coombs PJ, Russell RJ, Gamblin SJ, Skehel JJ (2009) Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proc Natl Acad Sci USA 106:17175–17180PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Takano R, Kiso M, Igarashi M, Le QM, Sekijima M, Ito K, Takada A, Kawaoka Y (2013) Molecular mechanisms underlying oseltamivir resistance mediated by an I117V substitution in the neuraminidase of subtype H5N1 avian influenza A viruses. J Infect Dis 207:89–97PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Bertran K, Dolz R, Majó N (2014) Pathobiology of avian influenza virus infection in minor gallinaceous species: a review. Avian Pathol 43:9–25CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Takahiro Hiono
    • 1
  • Masatoshi Okamatsu
    • 1
  • Manabu Igarashi
    • 2
    • 3
  • Ryan McBride
    • 4
  • Robert P. de Vries
    • 4
    • 5
  • Wenjie Peng
    • 4
  • James C. Paulson
    • 4
  • Yoshihiro Sakoda
    • 1
    • 3
  • Hiroshi Kida
    • 1
    • 2
    • 3
    Email author
  1. 1.Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
  2. 2.Research Center for Zoonosis ControlHokkaido UniversitySapporoJapan
  3. 3.Global Station for Zoonosis ControlGlobal Institution for Collaborative Research and Education (GI-CoRE), Hokkaido UniversitySapporoJapan
  4. 4.Department of Cell and Molecular Biology, Chemical Physiology and Immunology and Microbial ScienceThe Scripps Research InstituteLa JollaUSA
  5. 5.Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations