Advertisement

Archives of Virology

, Volume 161, Issue 2, pp 425–430 | Cite as

Occurrence and characterization of plum pox virus strain D isolates from European Russia and Crimea

  • Sergei Chirkov
  • Peter Ivanov
  • Anna Sheveleva
  • Anna Kudryavtseva
  • Yuri Prikhodko
  • Irina Mitrofanova
Brief Report

Abstract

Numerous plum pox virus (PPV) strain D isolates have been found in geographically distant regions of European Russia and the Crimean peninsula on different stone fruit hosts. Phylogenetic analysis of their partial and complete genomes suggests multiple introductions of PPV-D into Russia. Distinct natural isolates from Prunus tomentosa were found to bear unique amino acid substitutions in the N-terminus of the coat protein (CP) that may contribute to the adaptation of PPV-D to this host. Serological analysis using the PPV-D-specific monoclonal antibody 4DG5 provided further evidence that mutations at positions 58 and 59 of the CP are crucial for antibody binding.

Keywords

Plum pox virus Strain D 454 Pyrosequencing Phylogenetic analysis Serological analysis 

Notes

Acknowledgments

We gratefully acknowledge Drs. Anatoly Yushev and Olga Radchenko (Vavilov Research Institute of Plant Industry) for their cooperation in the Pavlovsk Research Station stone fruit collection survey and for helpful discussions. We thank Dr. Delano James for the serological analysis of the isolate Vulcan. This work was supported by the Russian Scientific Foundation (research project no. 14-24-00007).

Supplementary material

705_2015_2658_MOESM1_ESM.doc (258 kb)
Fig. S1 Geographical localities (red circles) of plum pox virus isolates studied in this work. (DOC 257 kb)
705_2015_2658_MOESM2_ESM.doc (26 kb)
Fig. S2 Offset in-frame triplet deletion in the NIb gene of the isolate Cr11. Nucleotide and deduced amino acid sequences of the isolates K9 and Cr11 around the deletion site are shown. Numerals above alignment show nucleotide positions in the complete genome of the isolate K9. The ?aspartic? acid residue deleted in the Cr11 polyprotein is shaded. (DOC 26 kb)

References

  1. 1.
    Cambra M, Asensio M, Gorris MT, Perez E, Camarasa E, Garcia JA, Moya JJ, Lopez-Abella D, Vela C, Sanz A (1994) Detection of plum pox potyvirus using monoclonal antibodies to structural and non-structural proteins. EPPO Bull 24:569–577CrossRefGoogle Scholar
  2. 2.
    Cambra M, Capote N, Myrta A, Llacer G (2006) Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull 36:202–204CrossRefGoogle Scholar
  3. 3.
    Candresse T, Cambra M, Dallot S, Lanneau M, Asensio M, Gorris MT, Revers F, Macquaire G, Olmos A, Boscia D, Quiot JB, Dunez J (1998) Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of plum pox potyvirus. Phytopathology 88:198–204CrossRefPubMedGoogle Scholar
  4. 4.
    Candresse T, Saenz P, Garcia JA, Boscia D, Navratil M, Gorris MT, Cambra M (2011) Analysis of the epitope structure of Plum pox virus coat protein. Phytopathology 101:611–619CrossRefPubMedGoogle Scholar
  5. 5.
    Carbonell A, Maliogka VI, de Jesus Perez J, Salvador B, San Leon D, Garcia JA, Simon-Mateo C (2013) Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow Plum pox virus to adapt to new hosts. Mol Plant Microbe Interact 26:1211–1224CrossRefPubMedGoogle Scholar
  6. 6.
    Chirkov S, Ivanov P, Sheveleva A (2013) Detection and partial molecular characterization of atypical plum pox virus isolates from naturally infected sour cherry. Arch Virol 158:1383–1387CrossRefPubMedGoogle Scholar
  7. 7.
    Chirkov S, Prihodko Y, Ivanov P, Sheveleva A (2015) Population of Plum pox virus in European Russia seems to be the most diverse in the world. In: XVIII international plant protection congress, Berlin, p 349Google Scholar
  8. 8.
    Damsteegt VD, Waterworth HE, Mink GI, Howell WE, Levy L (1997) Prunus tomentosa as a diagnostic host for detection of Plum pox virus and other Prunus viruses. Plant Dis 81:329–332CrossRefGoogle Scholar
  9. 9.
    Dolja VV, Haldeman-Cahill R, Montgomery AE, Vandenbosch KA, Carrington JC (1995) Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206:1007–1016CrossRefPubMedGoogle Scholar
  10. 10.
    Garcia JA, Glasa M, Cambra M, Candresse T (2014) Plum pox virus and sharka: a model potyvirus and a major disease. Mol Plant Pathol 15:226–241CrossRefPubMedGoogle Scholar
  11. 11.
    Glasa M, Prikhodko Y, Predajna L, Nagyova A, Shneyder Y, Zhivaeva T, Šubr Z, Cambra M, Candresse T (2013) Characterization of sour cherry isolates of Plum pox virus from the Volga basin in Russia reveals a new cherry strain of the virus. Phytopathology 103:972–979CrossRefPubMedGoogle Scholar
  12. 12.
    James D, Varga A (2004) Preliminary molecular characterization of Plum pox virus isolate W3174: evidence of a new strain. Acta Hortic 657:177–182CrossRefGoogle Scholar
  13. 13.
    James D, Varga A, Sanderson D (2013) Genetic diversity of Plum pox virus: strains, diseases and related challenges for control. Can J Plant Pathol 35:431–441CrossRefGoogle Scholar
  14. 14.
    James D, Sanderson D, Varga A, Greig N, Stobbs LW (2015) Analysis of the genetic diversity and relationships of selected Canadian isolates of Plum pox virus. Acta Hortic 1063:33–40CrossRefGoogle Scholar
  15. 15.
    Maejima K, Himeno M, Komatsu K, Takinami Y, Hashimoto M, Takahashi S, Yamaji Y, Oshima K, Namba S (2011) Molecular epidemiology of Plum pox virus in Japan. Phytopathology 101:567–574CrossRefPubMedGoogle Scholar
  16. 16.
    Matic S, Al Rwahnih M, Myrta A (2006) Diversity of Plum pox virus isolates in Bosnia and Herzegovina. Plant Pathol 55:11–17CrossRefGoogle Scholar
  17. 17.
    Matic S, Elmaghraby I, Law V, Varga A, Reed C, Myrta A, James D (2011) Serological and molecular characterization of isolates of Plum pox virus strain El Amar to better understand its diversity, evolution and unique geographical distribution. J Plant Pathol 93:303–310Google Scholar
  18. 18.
    Nemchinov L, Hadidi A (1998) Specific oligonucleotide primers for the direct detection of plum pox potyvirus-cherry subgroup. J Virol Methods 70:231–234CrossRefPubMedGoogle Scholar
  19. 19.
    Olmos A, Cambra M, Dasi MA, Candresse T, Esteban O, Gorris MT, Asensio M (1997) Simultaneous detection and typing of Plum pox potyvirus (PPV) isolates by hemi-nested PCR and PCR-ELISA. J Virol Methods 68:127–137CrossRefPubMedGoogle Scholar
  20. 20.
    Revers F, Garcia JA (2015) Molecular biology of potyviruses. Adv Virus Res 92:101–199CrossRefPubMedGoogle Scholar
  21. 21.
    Schneider WL, Damsteegt VD, Gildow FE, Stone AL, Sherman DJ, Levy LE, Mavrodieva V, Richwine N, Welliver R, Luster DG (2011) Molecular, ultrastructural, and biological characterization of Pennsylvania isolates of Plum pox virus. Phytopathology 101:627–636CrossRefPubMedGoogle Scholar
  22. 22.
    Sheveleva A, Ivanov P, Chirkov S, Prihodko Y, Varga A, James D (2012) Plum pox virus W appears to be the most variable strain of the seven recognized strains of the virus. Petria 22:226–232Google Scholar
  23. 23.
    Sheveleva A, Kudryavtseva A, Speranskaya A, Belenikin M, Melnikova N, Chirkov S (2013) Complete genome sequence of a novel Plum pox virus strain W isolate determined by 454 pyrosequencing. Virus Genes 47:385–388CrossRefPubMedGoogle Scholar
  24. 24.
    Šubr Z, Pittnerova S, Glasa M (2004) A simplified RT-PCR-based detection of recombinant Plum pox virus isolates. Acta Virol 48:173–176PubMedGoogle Scholar
  25. 25.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  26. 26.
    Wallis CM, Stone AL, Sherman DJ, Damsteegt VD, Gildow FE, Schneider WL (2007) Adaptation of plum pox virus to a herbaceous host (Pisum sativum) following serial passages. J Gen Virol 88:2839–2845CrossRefPubMedGoogle Scholar
  27. 27.
    Weber PH, Bujarski JJ (2015) Multiple functions of capsid proteins in (+) stranded RNA viruses during plant-virus interactions. Virus Res 196:140–149CrossRefPubMedGoogle Scholar
  28. 28.
    Wetzel T, Candresse T, Macquaire G, Ravelonandro M, Dunez J (1992) A highly sensitive immunocapture polymerase chain reaction method for Plum pox virus detection. J Virol Methods 39:27–37CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Sergei Chirkov
    • 1
  • Peter Ivanov
    • 1
  • Anna Sheveleva
    • 1
  • Anna Kudryavtseva
    • 2
  • Yuri Prikhodko
    • 3
  • Irina Mitrofanova
    • 4
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  3. 3.All-Russian Center of Plant QuarantineMoscowRussia
  4. 4.Nikita Botanical Gardens, National Scientific CenterYaltaRussia

Personalised recommendations