Advertisement

Archives of Virology

, Volume 160, Issue 11, pp 2741–2748 | Cite as

A porcine circovirus-2 mutant isolated in Brazil contains low-frequency substitutions in regions of immunoprotective epitopes in the capsid protein

  • Rafael Locatelli Salgado
  • Pedro Marcus Pereira Vidigal
  • Natalia F. Gonzaga
  • Luiz F. L. de Souza
  • Marcelo D. Polêto
  • Thiago Souza Onofre
  • Monique R. Eller
  • Carlos Eduardo Real Pereira
  • Juliana L. R. Fietto
  • Gustavo C. Bressan
  • Roberto M. C. Guedes
  • Márcia R. Almeida
  • Abelardo Silva Júnior
Original Article

Abstract

Porcine circovirus-2 (PCV2) is the etiologic agent of several diseases in pigs, including multi-systemic wasting syndrome (PMWS). In this work, a new mutant PCV2b was isolated from PMWS-affected pigs on a Brazilian farm. Its genome showed high sequence similarity (>99 % identity) to those from a group of emerging mutants isolated from cases of PMWS outbreaks in vaccinated pigs in China, the USA and South Korea. Here, we show that these isolates share a combination of low-frequency substitutions (single amino acid polymorphisms with a frequency of ≤25 %) in the viral capsid protein, mainly in regions of immunoprotective epitopes, and an additional lysine residue at position 234. These isolates were phylogenetically grouped in the PCV2b clade, reinforcing the idea of the emergence of a new group of mutants PCV2b associated with outbreaks worldwide. The identification of these polymorphisms in the viral capsid highlights the importance of considering these isolates for the development of more-effective vaccines.

Keywords

Capsid Protein Viral Capsid Conformational Epitope Viral Capsid Protein Classical Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by grants from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The funders had no role in the study design, data collection, analysis, decision to publish, or preparation of this manuscript. The authors would like to thank Carlos José Locatelli Salgado, the veterinarian responsible for the farm where the outbreak occurred, along with the owner of the farm, for permission for sample collection and release of the results. We also thank the Department of Information Technology (Universidade Federal de Viçosa [http://www.dti.ufv.br]) for supporting the data analysis on the computational cluster.

Supplementary material

705_2015_2567_MOESM1_ESM.doc (7.9 mb)
Supplementary material 1 (DOC 8099 kb)

References

  1. 1.
    Opriessnig T, Meng X-J, Halbur PG (2007) Porcine circovirus type 2 associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J Vet Diagn Invest 19:591–615CrossRefPubMedGoogle Scholar
  2. 2.
    Lekcharoensuk P, Morozov I, Paul PS, Thangthumniyom N, Wajjawalku W, Meng XJ (2004) Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. J Virol 78:8135–8145. doi: 10.1128/JVI.78.15.8135-8145.2004 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Saha D, Huang L, Bussalleu E, Lefebvre DJ, Fort M, Van Doorsselaere J, Nauwynck HJ (2012) Antigenic subtyping and epitopes’ competition analysis of porcine circovirus type 2 using monoclonal antibodies. Vet Microbiol 157:13–22. doi: 10.1016/j.vetmic.2011.11.030 CrossRefPubMedGoogle Scholar
  4. 4.
    Shang S-B, Jin Y-L, Jiang X, Zhou J-Y, Zhang X, Xing G, He JL, Yan Y (2009) Fine mapping of antigenic epitopes on capsid proteins of porcine circovirus, and antigenic phenotype of porcine circovirus type 2. Mol Immunol 46:327–334. doi: 10.1016/j.molimm.2008.10.028 CrossRefPubMedGoogle Scholar
  5. 5.
    Guo LJ, Lu YH, Wei YW, Huang LP, Liu CM (2010) Porcine circovirus type 2 (PCV2): genetic variation and newly emerging genotypes in China. Virol J 7:273. doi: 10.1186/1743-422X-7-273 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Huang LP, Lu YH, Wei YW, Guo LJ, Liu CM (2011) Identification of one critical amino acid that determines a conformational neutralizing epitope in the capsid protein of porcine circovirus type 2. BMC Microbiol 11:188. doi: 10.1186/1471-2180-11-188 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Liu J, Huang L, Wei Y, Tang Q, Liu D, Wang Y, Li S, Guo L, Wu H, Liu C (2013) Amino acid mutations in the capsid protein produce novel porcine circovirus type 2 neutralizing epitopes. Vet Microbiol 165:260–267. doi: 10.1016/j.vetmic.2013.03.013 CrossRefPubMedGoogle Scholar
  8. 8.
    Segalés J, Olvera A, Grau-Roma L, Charreyre C, Nauwynck H, Larsen L, Dupont K, McCullough K, Ellis J, Krakowka S, Mankertz A, Fredholm M, Fossum C, Timmusk S, Stockhofe-Zurwieden N, Beattie V, Armstrong D, Grassland B, Baekbo P, Allan G (2008) PCV-2 genotype definition and nomenclature. Vet Rec 162:867–868CrossRefPubMedGoogle Scholar
  9. 9.
    Fraile L, Sibila M, Nofrarías M, López-Jimenez R, Huerta E, Llorens A, López-Soria S, Pérez D, Segalés J (2012) Effect of sow and piglet porcine circovirus type 2 (PCV2) vaccination on piglet mortality, viraemia, antibody titre and production parameters. Vet Microbiol 161:229–234. doi: 10.1016/j.vetmic.2012.07.021 CrossRefPubMedGoogle Scholar
  10. 10.
    Han K, Seo HW, Oh Y, Park C, Kang I, Jang H, Chae C (2013) Efficacy of a piglet-specific commercial inactivated vaccine against Porcine circovirus type 2 in clinical field trials. Can J Vet Res 77:237–240PubMedCentralPubMedGoogle Scholar
  11. 11.
    Martelli P, Ferrari L, Morganti M, De Angelis E, Bonilauri P, Guazzetti S, Caleffi A, Borghetti P (2011) One dose of a porcine circovirus 2 subunit vaccine induces humoral and cell-mediated immunity and protects against porcine circovirus-associated disease under field conditions. Vet Microbiol 149:339–351. doi: 10.1016/j.vetmic.2010.12.008 CrossRefPubMedGoogle Scholar
  12. 12.
    Park C, Seo HW, Han K, Chae C (2014) Comparison of four commercial one-dose porcine circovirus type 2 (PCV2) vaccines administered to pigs challenged with PCV2 and porcine reproductive and respiratory syndrome virus at 17 weeks postvaccination to control porcine respiratory disease complex u. Clin Vaccine Immunol 21:399–406. doi: 10.1128/CVI.00768-13 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Takahagi Y, Toki S, Nishiyama Y, Morimatsu F, Murakami H (2010) Differential effects of porcine circovirus type 2 (PCV2) vaccination on PCV2 genotypes at Japanese pig farms. J Vet Med Sci 72:35–41CrossRefPubMedGoogle Scholar
  14. 14.
    Opriessnig T, Gerber PF, Xiao C-T, Mogler M, Halbur PG (2014) A commercial vaccine based on PCV2a and an experimental vaccine based on a variant mPCV2b are both effective in protecting pigs against challenge with a 2013 U.S. variant mPCV2b strain. Vaccine 32:230–237. doi: 10.1016/j.vaccine.2013.11.010 CrossRefPubMedGoogle Scholar
  15. 15.
    Toplak I, Lazić S, Lupulović D, Prodanov-Radulović J, Becskei Z, Došen R (2012) Petrović T (2012) Study of the genetic variability of porcine circovirus type 2 detected in Serbia and Slovenia. Acta Vet Hung 60:409–420. doi: 10.1556/AVet.035 CrossRefPubMedGoogle Scholar
  16. 16.
    Opriessnig T, Xiao C-T, Gerber PF, Halbur PG (2013) Emergence of a novel mutant PCV2b variant associated with clinical PCVAD in two vaccinated pig farms in the U.S. concurrently infected with PPV2. Vet Microbiol 163:177–183. doi: 10.1016/j.vetmic.2012.12.019 CrossRefPubMedGoogle Scholar
  17. 17.
    Seo HW, Park C, Kang I, Choi K, Jeong J, Park SJ, Chae C (2014) Genetic and antigenic characterization of a newly emerging porcine circovirus type 2b mutant first isolated in cases of vaccine failure in Korea. Arch Virol. doi: 10.1007/s00705-014-2164-6 Google Scholar
  18. 18.
    Guo L, Fu Y, Wang Y, Lu Y, Wei Y, Tang Q, Fan P, Liu J, Zhang L, Zhang F, Huang L, Liu D, Li S, Wu H, Liu C (2012) A porcine circovirus type 2 (PCV2) mutant with 234 amino acids in capsid protein showed more virulence in vivo, compared with classical PCV2a/b strain. PLoS One 7:e41463. doi: 10.1371/journal.pone.0041463 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Salgado RL, Vidigal PMP, de Souza LFL, Onofre TS, Gonzaga NF, Eller MR, Bressan GC, Fietto JLR, Almeida MR, Silva Júnior A (2014) Identification of an emergent porcine circovirus-2 in vaccinated pigs from a Brazilian farm during a postweaning multisystemic wasting syndrome outbreak. Genome Announc. doi: 10.1128/genomeA.00163-14 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Segalés J, Rosell C, Domingo M (2004) Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease. Vet Microbiol 98:137–149CrossRefPubMedGoogle Scholar
  21. 21.
    Corrêa AMR, Pescador CA, Schmitz M, Zlotowski P, Rozza DB, Oliveira EC, Barcellos DE, Driemeier D (2006) Aspectos clínico-patológicos associados à circovirose suína no Rio Grande do Sul. Pesqui Veterinária Bras 26:9–13Google Scholar
  22. 22.
    Souza NN, Lobato ZIP, Guedes RMC (2008) Estudo retrospectivo de diagnóstico de circovirose suína pela técnica de imunohistoquímica. Arq Inst Biol (Sao Paulo) 75:521–525Google Scholar
  23. 23.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi: 10.1093/molbev/mst010 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Sorden SD, Harms PA, Nawagitgul P, Cavanaugh D, Paul PS (1999) Development of a polyclonal-antibody-based immunohistochemical method for the detection of type 2 porcine circovirus in formalin-fixed, paraffin-embedded tissue. J Vet Diagn Invest 11:528–530CrossRefPubMedGoogle Scholar
  25. 25.
    Vidigal PMP, Mafra CL, Silva FMF, Fietto JLR, Silva Júnior A, Almeida MR (2012) Tripping over emerging pathogens around the world: a phylogeographical approach for determining the epidemiology of Porcine circovirus-2 (PCV-2), considering global trading. Virus Res 163:320–327. doi: 10.1016/j.virusres.2011.10.019 CrossRefPubMedGoogle Scholar
  26. 26.
    Khayat R, Brunn N, Speir JA, Hardham JM, Ankenbauer RG, Schneemann A, Johnson JE (2011) The 2.3-angstrom structure of porcine circovirus 2. J Virol 85:7856–7862. doi: 10.1128/JVI.00737-11 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi: 10.1038/nmeth.2109 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  29. 29.
    Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi: 10.1093/sysbio/sys029 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Zwickl D (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. The University of Texas, AustinGoogle Scholar
  31. 31.
    Sukumaran J, Holder MT (2010) DendroPy: a Python library for phylogenetic computing. Bioinformatics 26:1569–1571. doi: 10.1093/bioinformatics/btq228 CrossRefPubMedGoogle Scholar
  32. 32.
    Liu Q, Tikoo SK, Babiuk LA (2001) Nuclear localization of the ORF2 protein encoded by porcine circovirus type 2. Virology 285:91–99. doi: 10.1006/viro.2001.0922 CrossRefPubMedGoogle Scholar
  33. 33.
    Xiao C-T, Halbur PG, Opriessnig T (2012) Complete genome sequence of a novel porcine circovirus type 2b variant present in cases of vaccine failures in the United States. J Virol 86:12469. doi: 10.1128/JVI.02345-12 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Eddicks M, Fux R, Szikora F, Eddicks L, Majzoub-Altweck M, Hermanns W, Sutter G, Palzer A, Banholzer E, Ritzmann M (2015) Detection of a new cluster of porcine circovirus type 2b strains in domestic pigs in Germany. Vet Microbiol 176:337–343. doi: 10.1016/j.vetmic.2015.01.013 CrossRefPubMedGoogle Scholar
  35. 35.
    Franzo G, Cortey M, De Castro AMMG, Piovezan U, Szabo MPJ, Drigo M, Segalés J, Richtzenhain LJ (2015) Genetic characterisation of Porcine circovirus type 2 (PCV2) strains from feral pigs in the Brazilian Pantanal: an opportunity to reconstruct the history of PCV2 evolution. Vet Microbiol 178:158–162. doi: 10.1016/j.vetmic.2015.05.003 CrossRefPubMedGoogle Scholar
  36. 36.
    Segalés J (2012) Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res 164:10–19. doi: 10.1016/j.virusres.2011.10.007 CrossRefPubMedGoogle Scholar
  37. 37.
    Gerber PF, Johnson J, Shen H, Striegel D, Xiao C-T, Halbur PG, Opriessnig T (2013) Association of concurrent porcine circovirus (PCV) 2a and 2b infection with PCV associated disease in vaccinated pigs. Res Vet Sci 95:775–781. doi: 10.1016/j.rvsc.2013.06.004 CrossRefPubMedGoogle Scholar
  38. 38.
    Wang F, Guo X, Ge X, Wang Z, Chen Y, Cha Z, Yang H (2009) Genetic variation analysis of Chinese strains of porcine circovirus type 2. Virus Res 145:151–156. doi: 10.1016/j.virusres.2009.05.015 CrossRefPubMedGoogle Scholar
  39. 39.
    Mahé D, Blanchard P, Truong C, Arnauld C, Le Cann P, Cariolet R, Madec F, Albina E, Jestin A (2000) Differential recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and identification of immunorelevant epitopes. J Gen Virol 81:1815–1824CrossRefPubMedGoogle Scholar
  40. 40.
    Truong C, Mahe D, Blanchard P, Le Dimna M, Madec F, Jestin A, Albina E (2001) Identification of an immunorelevant ORF2 epitope from porcine circovirus type 2 as a serological marker for experimental and natural infection. Arch Virol 146:1197–1211CrossRefPubMedGoogle Scholar
  41. 41.
    Guo L, Lu Y, Wei Y, Huang L, Wu H, Liu C (2011) Porcine circovirus genotype 2a (PCV2a) and genotype 2b (PCV2b) recombinant mutants showed significantly enhanced viral replication and altered antigenicity in vitro. Virology 419:57–63. doi: 10.1016/j.virol.2011.08.004 CrossRefPubMedGoogle Scholar
  42. 42.
    Fraile L, Grau-Roma L, Sarasola P, Sinovas N, Nofrarías M, López-Jimenez R, López-Soria S, Sibila M, Segalés J (2012) Inactivated PCV2 one shot vaccine applied in 3-week-old piglets: improvement of production parameters and interaction with maternally derived immunity. Vaccine 30:1986–1992. doi: 10.1016/j.vaccine.2012.01.008 CrossRefPubMedGoogle Scholar
  43. 43.
    Velasova M, Alarcon P, Werling D, Nevel A, Wieland B (2013) Effectiveness of porcine circovirus type 2 vaccination in reducing the severity of post-weaning multisystemic wasting syndrome in pigs. Vet J 197:842–847. doi: 10.1016/j.tvjl.2013.05.043 CrossRefPubMedGoogle Scholar
  44. 44.
    Opriessnig T, Ramamoorthy S, Madson DM, Patterson AR, Pal N, Carman S, Meng XJ, Halbur PG (2008) Differences in virulence among porcine circovirus type 2 isolates are unrelated to cluster type 2a or 2b and prior infection provides heterologous protection. J Gen Virol 89:2482–2491. doi: 10.1099/vir.0.2008/001081-0 CrossRefPubMedGoogle Scholar
  45. 45.
    Opriessnig T, Gerber PF, Xiao CT, Halbur PG, Matzinger SR, Meng XJ (2014) Commercial PCV2a-based vaccines are effective in protecting naturally PCV2b-infected finisher pigs against experimental challenge with a 2012 mutant PCV2. Vaccine 32:4342–4348. doi: 10.1016/j.vaccine.2014.06.004 CrossRefPubMedGoogle Scholar
  46. 46.
    Chiarelli-Neto O, Yotoko KSC, Vidigal PMP, Silva FMF, Castro LA, Fietto JLR, Silva A, Almeida MR (2009) Classification and putative origins of Brazilian porcine circovirus 2 inferred through phylogenetic and phylogeographical approaches. Virus Res 140:57–63. doi: 10.1016/j.virusres.2008.11.002 CrossRefPubMedGoogle Scholar
  47. 47.
    Ciacci-Zanella JR, Morés N (2003) Diagnosis of post-weaning multisystemic wasting syndrome in pigs in Brazil caused by porcine circovirus type 2. Arq Bras Med Veterinária e Zootec 55:522–527. doi: 10.1590/S0102-09352003000500002 CrossRefGoogle Scholar
  48. 48.
    Silva FMF, Júnior AS, de Oliveira Peternelli EF, Viana VW, Neto OC, Fietto JLR, Vargas MI, Nero LA, de Almeida MR (2011) Retrospective study on Porcine circovirus-2 by nested pcr and real time pcr in archived tissues from 1978 in brazil. Braz J Microbiol 42:1156–1160. doi: 10.1590/S1517-838220110003000039 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Rafael Locatelli Salgado
    • 1
    • 2
  • Pedro Marcus Pereira Vidigal
    • 3
  • Natalia F. Gonzaga
    • 1
    • 4
  • Luiz F. L. de Souza
    • 1
    • 4
  • Marcelo D. Polêto
    • 1
    • 2
  • Thiago Souza Onofre
    • 1
    • 2
  • Monique R. Eller
    • 5
  • Carlos Eduardo Real Pereira
    • 6
  • Juliana L. R. Fietto
    • 1
    • 2
  • Gustavo C. Bressan
    • 1
    • 2
  • Roberto M. C. Guedes
    • 6
  • Márcia R. Almeida
    • 1
    • 2
  • Abelardo Silva Júnior
    • 1
    • 4
  1. 1.Laboratório de Infectologia Molecular AnimalUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Departmento de Bioquímica e Biologia MolecularUniversidade Federal de ViçosaViçosaBrazil
  3. 3.Núcleo de Análise de Biomoléculas (NuBiomol)Universidade Federal de ViçosaViçosaBrazil
  4. 4.Departmento de VeterináriaUniversidade Federal de ViçosaViçosaBrazil
  5. 5.Departmento de Tecnologia de AlimentosUniversidade Federal de ViçosaViçosaBrazil
  6. 6.Escola de VeterináriaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations