Advertisement

Archives of Virology

, Volume 160, Issue 10, pp 2617–2621 | Cite as

Identification of recombination between Muscovy duck parvovirus and goose parvovirus structural protein genes

  • Hongxing Shen
  • Wen Zhang
  • Hua Wang
  • Yang ZhouEmail author
  • Shihe ShaoEmail author
Brief Report

Abstract

Waterfowl parvoviruses are divided into Muscovy duck parvoviruses (MDPVs) and goose parvoviruses (GPVs). Phylogenetic analysis based on structural gene nucleotide sequences showed that the strains of three GPVs (DY, PT and D strains) and two MDPVs (GX5 and SAAH-SHNH) are closely related and formed one cluster. Recombination analysis showed that recombination between GPV-GDFsh and MDPV-89384/FRANCE strains led to five recombinant strains: GPV-DY, GPV-PT, GPV-D, MDPV-GX5 and MDPV-SAAH-SHNH. The recombinant event was confirmed using the Simplot program and phylogenetic analysis. This is the first comprehensive investigation of recombination between MDPV and GPV structural genes.

Keywords

Recombination MDPVs GPVs 

Notes

Acknowledgments

This work was supported by China Postdoctoral Science Foundation (2013M540416), the Senior Talent Foundation of Jiangsu University (1281270014), National Natural Science Foundation of China (31301919), and Natural Science Foundation of Jiangsu Province (BK20130506).

Supplementary material

705_2015_2541_MOESM1_ESM.doc (30 kb)
Supplementary material 1 (DOC 29 kb)

References

  1. 1.
    Chu CY, Pan MJ, Cheng JT (2001) Genetic variation of the nucleocapsid genes of waterfowl parvovirus. J Vet Med Sci 63:1165–1170CrossRefPubMedGoogle Scholar
  2. 2.
    Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics (Oxford, England) 16:573–582CrossRefGoogle Scholar
  3. 3.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 23:2947–2948CrossRefGoogle Scholar
  4. 4.
    Le Gall-Recule G, Jestin V, Chagnaud P, Blanchard P, Jestin A (1996) Expression of muscovy duck parvovirus capsid proteins (VP2 and VP3) in a baculovirus expression system and demonstration of immunity induced by the recombinant proteins. J Gen Virol 77(Pt 9):2159–2163CrossRefPubMedGoogle Scholar
  5. 5.
    Liu HM, Wang H, Tian XJ, Zhang S, Zhou XH, Qi KZ, Pan L (2014) Complete genome sequence of goose parvovirus Y strain isolated from Muscovy ducks in China. Virus Genes 48:199–202CrossRefPubMedGoogle Scholar
  6. 6.
    Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics (Oxford, England) 21:260–262CrossRefGoogle Scholar
  7. 7.
    Martins A, Shuman S (2000) Mechanism of phosphoanhydride cleavage by baculovirus phosphatase. J Biol Chem 275:35070–35076CrossRefPubMedGoogle Scholar
  8. 8.
    Odelola HA, Koza J (1975) Characterization of nigerian strains of West Nile virus by plaque formation. Acta Virol 19:489–492PubMedGoogle Scholar
  9. 9.
    Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225CrossRefPubMedGoogle Scholar
  10. 10.
    Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 98:13757–13762PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Sadecky E, Brezina R, Kazar J, Urvolgyi J (1975) Immunization against Q-fever of naturally infected dairy cows. Acta Virol 19:486–488PubMedGoogle Scholar
  12. 12.
    Salminen MO, Carr JK, Burke DS, McCutchan FE (1995) Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retroviruses 11:1423–1425CrossRefPubMedGoogle Scholar
  13. 13.
    Simmonds P (2006) Recombination and selection in the evolution of picornaviruses and other Mammalian positive-stranded RNA viruses. J Virol 80:11124–11140PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Smith JM (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126–129PubMedGoogle Scholar
  15. 15.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  16. 16.
    Tatar-Kis T, Mato T, Markos B, Palya V (2004) Phylogenetic analysis of Hungarian goose parvovirus isolates and vaccine strains. Avian Pathol 33:438–444CrossRefPubMedGoogle Scholar
  17. 17.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Wang S, Cheng XX, Chen SY, Zhu XL, Chen SL, Lin FQ, Li ZL (2013) Genetic characterization of a potentially novel goose parvovirus circulating in Muscovy duck flocks in Fujian Province, China. J Vet Med Sci 75:1127–1130CrossRefPubMedGoogle Scholar
  19. 19.
    Zadori Z, Erdei J, Nagy J, Kisary J (1994) Characteristics of the genome of goose parvovirus. Avian Pathol 23:359–364CrossRefPubMedGoogle Scholar
  20. 20.
    Zadori Z, Stefancsik R, Rauch T, Kisary J (1995) Analysis of the complete nucleotide sequences of goose and muscovy duck parvoviruses indicates common ancestral origin with adeno-associated virus 2. Virology 212:562–573CrossRefPubMedGoogle Scholar
  21. 21.
    Zhu Y, Zhou Z, Huang Y, Yu R, Dong S, Li Z, Zhang Y (2014) Identification of a recombinant Muscovy duck parvovirus (MDPV) in Shanghai, China. Vet Microbiol 174:560–564CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Medical CollegeJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Institute of Life SciencesJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations