Archives of Virology

, Volume 160, Issue 9, pp 2151–2159 | Cite as

Isolation of Japanese encephalitis virus and a novel insect-specific flavivirus from mosquitoes collected in a cowshed in Japan

  • Ryusei Kuwata
  • Hiroki Sugiyama
  • Kenzo Yonemitsu
  • Nguyen Van Dung
  • Yutaka Terada
  • Masayasu Taniguchi
  • Hiroshi Shimoda
  • Ai Takano
  • Ken Maeda
Original Article


Cattle do not generally appear to develop severe viremia when infected with Japanese encephalitis virus (JEV), and they can be infected without showing clinical signs. However, two cattle in Japan recently died from JEV infection. In this study, we investigated the presence of different species of mosquitoes and flavivirus in a cowshed in the southwest region of Japan. In this cowshed, the two most common species of mosquitoes collected were Culex tritaeniorhynchus (including Culex pseudovishnui) and Anopheles sinensis. We performed virus isolation from the collected mosquitoes and obtained two flaviviruses: JEV and a novel insect-specific flavivirus, tentatively designated Yamadai flavivirus (YDFV). Phylogenetic analysis revealed that all three JEV isolates belonged to JEV genotype I and were closely related to a JEV strain that was isolated from the brains of cattle exhibiting neurological symptoms in Japan. Genetic characterization of YDFV revealed that the full genome RNA (10,863 nucleotides) showed homology with the Culex-associated insect-specific flaviviruses Quang Binh virus (79 % identity) and Yunnan Culex flavivirus (78 % identity), indicating that YDFV is a novel insect-specific flavivirus.


Wild Boar West Nile Virus Japanese Encephalitis Virus Mosquito Species Dengue Hemorrhagic Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Norio Kamura and the staff of the Experimental Farm of Yamaguchi University for their assistance in arranging field work. This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science and Technology TOKUBETSUKEIHI to Dr. Masahiro Fujishima, Yamaguchi University, and Grants-in-Aid from the Japanese Ministry of Health, Labor and Welfare (H25-Shinko-Ippan-006), and the Japan Society for the Promotion of Science (KAKEN Grant No. 25893151).

Supplementary material

705_2015_2488_MOESM1_ESM.doc (68 kb)
Supplementary material 1 (DOC 67 kb)


  1. 1.
    Lindenbach BD, Murray CL, Thiel HJ, Rice CM (2013) Flaviviridae. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincott Williams and Wilkins, Philadelphia, pp 712–746Google Scholar
  2. 2.
    Misra UK, Kalita J (2010) Overview: Japanese encephalitis. Prog Neurobiol 91:108–120CrossRefPubMedGoogle Scholar
  3. 3.
    Schuh AJ, Ward MJ, Leigh Brown AJ, Barrett AD (2014) Dynamics of the emergence and establishment of a newly dominant genotype of Japanese encephalitis virus throughout Asia. J Virol 88:4522–4532PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Nabeshima T, Morita K (2010) Phylogeographic analysis of the migration of Japanese encephalitis virus in Asia. Future Virol 5:343–351CrossRefGoogle Scholar
  5. 5.
    Philip SP, Hiriyan J, Gajanana A (2000) Japanese encephalitis virus infection in mosquitoes and its epidemiological implications. ICMR Bull 30:37–43Google Scholar
  6. 6.
    Clements AN (1999) Mosquito-host interaction. In: Clements AN (ed) The biology of mosquitoes: sensory reception and behaviour. CABI Press, UK, pp 480–550Google Scholar
  7. 7.
    Ilkal MA, Dhanda V, Rao BU, George S, Mishra AC, Prasanna Y, Gopalkrishna S, Pavri KM (1988) Absence of viraemia in cattle after experimental infection with Japanese encephalitis virus. Trans R Soc Trop Med Hyg 82:628–631CrossRefPubMedGoogle Scholar
  8. 8.
    Sakai T, Horimoto M (1989) Japanese encephalitis virus infection in cattle: changes in antibody distribution in the central district of Japan during a 4-year period. Prev Vet Med 116:325–335Google Scholar
  9. 9.
    Katayama T, Saito S, Horiuchi S, Maruta T, Kato T, Yanase T, Yamakawa M, Shirafuji H (2013) Nonsuppurative encephalomyelitis in a calf in Japan and isolation of Japanese encephalitis virus genotype 1 from the affected calf. J Clin Microbiol 51:3448–3453PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kato N, Suzuki S, Sugie N, Kato T, Yanase T, Yamakawa M, Shirafuji H (2014) Japanese encephalitis in a 114-month-old cow: pathological investigation of the affected cow and genetic characterization of Japanese encephalitis virus isolate. BMC Vet Res 10:63PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Lim SI, Kweon CH, Tark DS, Kim SH, Yang DK (2007) Sero-survey on Aino, Akabane, Chuzan, bovine ephemeral fever and Japanese encephalitis virus of cattle and swine in Korea. J Vet Sci 8:45–49PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Cook S, Moureau G, Kitchen A, Gould EA, de Lamballerie X, Holmes EC, Harbach RE (2012) Molecular evolution of the insect-specific flaviviruses. J Gen Virol 93:223–234PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Lutomiah JJ, Mwandawiro C, Magambo J, Sang RC (2007) Infection and vertical transmission of Kamiti river virus in laboratory bred Aedes aegypti mosquitoes. J Insect Sci 7:1–7CrossRefPubMedGoogle Scholar
  14. 14.
    Saiyasombat R, Bolling BG, Brault AC, Bartholomay LC, Blitvich BJ (2011) Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae). J Med Entomol 48:1031–1038CrossRefPubMedGoogle Scholar
  15. 15.
    Bolling BG, Olea-Popelka FJ, Eisen L, Moore CG, Blair CD (2012) Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology 427:90–97PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Hoshino K, Isawa H, Tsuda Y, Yano K, Sasaki T, Yuda M, Takasaki T, Kobayashi M, Sawabe K (2007) Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 359:405–414CrossRefPubMedGoogle Scholar
  17. 17.
    Morales-Betoulle ME, Monzón Pineda ML, Sosa SM, Panella N, López MR, Cordón-Rosales C, Komar N, Powers A, Johnson BW (2008) Culex flavivirus isolates from mosquitoes in Guatemala. J Med Entomol 45:1187–1190Google Scholar
  18. 18.
    Blitvich BJ, Lin M, Dorman KS, Soto V, Hovav E, Tucker BJ, Staley M, Platt KB, Bartholomay LC (2009) Genomic sequence and phylogenetic analysis of Culex flavivirus, an insect-specific flavivirus, isolated from Culex pipiens (Diptera: Culicidae) in Iowa. J Med Entomol 46:934–941PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Cook S, Moureau G, Harbach RE, Mukwaya L, Goodger K, Ssenfuka F, Gould E, Holmes EC, de Lamballerie X (2009) Isolation of a novel species of flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito population in Uganda. J Gen Virol 90:2669–2678PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Kim DY, Guzman H, Bueno R Jr, Dennett JA, Auguste AJ, Carrington CV, Popov VL, Weaver SC, Beasley DW, Tesh RB (2009) Characterization of Culex Flavivirus (Flaviviridae) strains isolated from mosquitoes in the United States and Trinidad. Virology 386:154–159CrossRefPubMedGoogle Scholar
  21. 21.
    Farfan-Ale JA, Loroño-Pino MA, Garcia-Rejon JE, Soto V, Lin M, Staley M, Dorman KS, Bartholomay LC, Hovav E, Blitvich BJ (2010) Detection of flaviviruses and orthobunyaviruses in mosquitoes in the Yucatan Peninsula of Mexico in 2008. Vector Borne Zoonotic Dis 10:777–783PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Saiyasombat R, Dorman KS, Garcia-Rejon JE, Loroño-Pino MA, Farfan-Ale JA, Blitvich BJ (2010) Isolation and sequence analysis of Culex flavivirus from Culex interrogator and Culex quinquefasciatus in the Yucatan Peninsula of Mexico. Arch Virol 155:983–986PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Bolling BG, Eisen L, Moore CG, Blair CD (2011) Insect-specific flaviviruses from Culex mosquitoes in Colorado, with evidence of vertical transmission. Am J Trop Med Hyg 85:169–177PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Machado DC, Mondini A, dos Santos Santana V, Yonamine PT, Chiaravalloti Neto F, Zanotto PM, Nogueira ML (2012) First identification of Culex flavivirus (Flaviviridae) in Brazil. Intervirology 55:475–483CrossRefPubMedGoogle Scholar
  25. 25.
    Goenaga S, Fabbri CM, García JB, Rondán JC, Gardenal N, Calderón GE, Enria DA, Levis SM (2014) New strains of Culex flavivirus isolated in Argentina. J Med Entomol 51:900–906CrossRefPubMedGoogle Scholar
  26. 26.
    Obara-Nagoya M, Yamauchi T, Watanabe M, Hasegawa S, Iwai-Itamochi M, Horimoto E, Takizawa T, Takashima I, Kariwa H (2013) Ecological and genetic analyses of the complete genomes of Culex flavivirus strains isolated from Culex tritaeniorhynchus and Culex pipiens (Diptera: Culicidae) group mosquitoes. J Med Entomol 50:300–309CrossRefPubMedGoogle Scholar
  27. 27.
    Crabtree MB, Nga PT, Miller BR (2009) Isolation and characterization of a new mosquito flavivirus, Quang Binh virus, from Vietnam. Arch Virol 154:857–860CrossRefPubMedGoogle Scholar
  28. 28.
    Zuo S, Zhao Q, Guo X, Zhou H, Cao W, Zhang J (2014) Detection of Quang Binh virus from mosquitoes in China. Virus Res 180:31–38CrossRefPubMedGoogle Scholar
  29. 29.
    Parreira R, Cook S, Lopes Â, de Matos AP, de Almeida AP, Piedade J, Esteves A (2012) Genetic characterization of an insect-specific flavivirus isolated from Culex theileri mosquitoes collected in southern Portugal. Virus Res 167:152–161PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB (1998) Phylogeny of the genus Flavivirus. J Virol 72:73–83PubMedCentralPubMedGoogle Scholar
  31. 31.
    Yun SI, Kim SY, Rice CM, Lee YM (2003) Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 77:6450–6465PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  33. 33.
    Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  34. 34.
    Kimura M (1982) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evo 16:111–120CrossRefGoogle Scholar
  35. 35.
    Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Accessed 10 April 2013
  36. 36.
    Felsenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  37. 37.
    Takhampunya R, Kim HC, Tippayachai B, Kengluecha A, Klein TA, Lee WJ, Grieco J, Evans BP (2011) Emergence of Japanese encephalitis virus genotype V in the Republic of Korea. Virol J 8:449PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Obara M, Yamauchi T, Watanabe M, Hasegawa S, Ueda Y, Matsuno K, Iwai M, Horimoto E, Kurata T, Takizawa T et al (2011) Continuity and change of Japanese encephalitis virus in Toyama Prefecture, Japan. Am J Trop Med Hyg 84:695–708PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Takasaki T, Kotaki A, Kurane I, Sawabe K, Hayashi T, Kobayashi M (2009) Isolation of Japanese encephalitis virus from wild boar captured in winter season. IASR 30:156–157 (in Japanese)Google Scholar
  40. 40.
    Ohno Y, Sato H, Suzuki K, Yokoyama M, Uni S, Shibasaki T, Sashika M, Inokuma H, Kai K, Maeda K (2009) Detection of antibodies against Japanese encephalitis virus in raccoons, raccoon dogs and wild boars in Japan. J Vet Med Sci 71:1035–1039CrossRefPubMedGoogle Scholar
  41. 41.
    Shimoda H, Ohno Y, Mochizuki M, Iwata H, Okuda M, Maeda K (2010) Dogs as sentinels for human infection with Japanese encephalitis virus. Emerg Infect Dis 16:1137–1139PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Liu XB, Liu QY, Guo YH, Jiang JY, Ren DS, Zhou GC, Zheng CJ, Zhang Y, Liu JL, Li ZF et al (2011) The abundance and host-seeking behavior of culicine species (Diptera: Culicidae) and Anopheles sinensis in Yongcheng city, People’s Republic of China. Parasit Vectors 4:221PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Thenmozhi V, Rajendran R, Ayanar K, Manavalan R, Tyagi BK (2006) Long-term study of Japanese encephalitis virus infection in Anopheles subpictus in Cuddalore district, Tamil Nadu, South India. Trop Med Int Health 11:288–293CrossRefPubMedGoogle Scholar
  44. 44.
    Feng Y, Fu S, Zhang H, Li M, Zhou T, Wang J, Zhang Y, Wang H, Tang Q, Liang G (2012) Distribution of mosquitoes and mosquito-borne viruses along the China-Myanmar border in Yunnan Province. Jpn J Infect Dis 65:215–221CrossRefPubMedGoogle Scholar
  45. 45.
    Liu H, Lu HJ, Liu ZJ, Jing J, Ren JQ, Liu YY, Lu F, Jin NY (2013) Japanese encephalitis virus in mosquitoes and swine in Yunnan province, China 2009–2010. Vector Borne Zoonotic Dis 13:41–49PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Kamimura K (1968) The distribution and habit of medically important mosquitoes of Japan. Med Entomol Zool 19:15–34 (in Japanese)Google Scholar
  47. 47.
    Naik PS, Ilkal MA, Pant U, Kulkarni SM, Dhanda V (1990) Isolation of Japanese encephalitis virus from Culex pseudovishnui Colless, 1957 (Diptera: Culicidae) in Goa. Indian J Med Res 91:331–333PubMedGoogle Scholar
  48. 48.
    Mourya DT, Mishra AC, Soman RS (1991) Transmission of Japanese encephalitis virus in Culex pseudovishnui & C. tritaeniorhynchus mosquitoes. Indian J Med Res 93:250–252PubMedGoogle Scholar
  49. 49.
    Wada Y, Watanabe M (1971) Ecological studies of Culex tritaeniorhynchus summorosus (Diptera: Culicidae): IV. Comparative studies on the behavior of C. tritaeniorhynchus summorosus and C. pseudovishnui. Med Entomol Zool 22:24–30 (in Japanese)Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Ryusei Kuwata
    • 1
  • Hiroki Sugiyama
    • 1
  • Kenzo Yonemitsu
    • 1
  • Nguyen Van Dung
    • 1
  • Yutaka Terada
    • 1
  • Masayasu Taniguchi
    • 2
  • Hiroshi Shimoda
    • 1
  • Ai Takano
    • 1
  • Ken Maeda
    • 1
  1. 1.Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
  2. 2.Laboratory of Veterinary Theriogenology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan

Personalised recommendations