Archives of Virology

, Volume 159, Issue 11, pp 3013–3019 | Cite as

Characterization and genome sequence of Dev2, a new T7-like bacteriophage infecting Cronobacter turicensis

  • Michal Kajsík
  • Lucia Oslanecová
  • Tomáš Szemes
  • Michalea Hýblová
  • Andrea Bilková
  • Hana DrahovskáEmail author
  • Ján Turňa
Original Article


Cronobacter spp. are opportunistic pathogenic bacteria that are responsible for severe infections in neonates. Powdered infant formula was confirmed to be the source in some cases. Bacteriophages offer a safe means for eliminating this pathogen. In the present study, we investigated the growth parameters and genome organization of a new bacteriophage, Dev2, isolated from sewage. The Dev2 phage contains DNA with a length of 39 kb and belongs to the T7 branch of the subfamily Autographivirinae, with the highest degree of identity to the phage K1F. The host specificity of Dev2 is limited to C. turicensis strains of the CT O:1 serotype. With a lower efficiency, this phage also infects some Salmonella and E. coli strains. The Dev2 phage can inactivate sensitive Cronobacter strains in reconstituted milk formula. The results obtained in this study are an important prerequisite for application of Dev2 in food control.


Phage Particle Phage Therapy Powdered Infant Formula Overnight Bacterial Culture Tail Fiber Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This publication is a result of implementation the project REVOGENE – Research Centre for Molecular Genetics (ITMS 26240220067), supported by the Research & Development Operational Programme funded by the ERDF. This work was supported by the Slovak Research and Development Agency under contract no. APVV-0098-10.


  1. 1.
    Abbasifar R, Kropinski AM, Sabour PM, Ackermann H, Villa AA (2012) Genome sequence of Cronobacter sakazakii Myovirus vB_CsaM_GAP31. J Virol 86:13830–13831PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Abbasifar R, Kropinski AM, Sabour PM, Ackermann HW, Lingohr EJ, Griffiths MW (2012) Complete genome sequence of Cronobacter sakazakii bacteriophage vB_CsaM_GAP161. Journal of virology 86:13806–13807PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Abbasifar R, Kropinski AM, Sabour PM, Ackermann HW, AlanisVilla A, Abbasifar A, Griffiths MW (2013) The genome of Cronobacter sakazakii bacteriophage vB_CsaP_GAP227 suggests a new genus within the Autographivirinae. Genome Announc 1(1):e00122PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Abbasifar R, Kropinski AM, Sabour PM, Chambers JR, Mackinnon J, Malig T, Griffiths MW (2014) Efficiency of bacteriophage therapy against Cronobacter sakazakii in Galleria mellonella (greater wax moth) larvae. Arch Virol. doi: 10.1007/s00705-014-2055-x
  5. 5.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bhardwaj A, Olia AS, Cingolani G (2014) Architecture of viral genome-delivery molecular machines. Curr Opin Struct Biol 25:1–8PubMedCrossRefGoogle Scholar
  7. 7.
    Bull JJ, Vimr ER, Molineux IJ (2010) A tale of tails: sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli. Virology 398:79–86PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Clokie MRJ, Kropinski AM (eds) (2009) Bacteriophages: methods and protocols, vol 1: isolation, characterization, and interactions, vol 501. Humana Press, New YorkGoogle Scholar
  9. 9.
    Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Davies MR, Broadbent SE, Harris SR, Thomson NR, van der Woude MW (2013) Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity. PLoS Genet 9:e1003568PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Fao/WHO (2008) Enterobacter sakazakii (Cronobacter spp.) in powdered follow-up formulae: meeting report. Microbiological risk assessment series no 15, Rome, Italy, p 90Google Scholar
  12. 12.
    Garcia P, Martinez B, Obeso JM, Rodriguez A (2008) Bacteriophages and their application in food safety. Lett Appl Microbiol 47:479–485PubMedCrossRefGoogle Scholar
  13. 13.
    Holý O, Forsythe S (2013) Cronobacter spp. as emerging causes of healthcare-associated infection. J Hosp Infect 86(3):169–177PubMedCrossRefGoogle Scholar
  14. 14.
    Hunter CJ, Bean JF (2013) Cronobacter: an emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis. J Perinatol 33:581–585PubMedCrossRefGoogle Scholar
  15. 15.
    Iversen C, Forsythe S (2004) Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol 21:771–777CrossRefGoogle Scholar
  16. 16.
    Jarvis KG, Grim CJ, Franco AA, Gopinath G, Sathyamoorthy V, Hu L, Sadowski JA, Lee CS, Tall BD (2011) Molecular characterization of Cronobacter lipopolysaccharide O-antigen gene clusters and development of serotype-specific PCR assays. Appl Environ Microbiol 77:4017–4026PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kim KP, Klumpp J, Loessner MJ (2007) Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int J Food Microbiol 115:195–203PubMedCrossRefGoogle Scholar
  18. 18.
    Kim M, Ryu S (2012) Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium. Mol Microbiol 86:411–425PubMedCrossRefGoogle Scholar
  19. 19.
    Kucerova E, Joseph S, Forsythe S (2011) The Cronobacter genus: ubiquity and diversity. Qual Assur Saf Crops Foods 3:104–122CrossRefGoogle Scholar
  20. 20.
    Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414PubMedCrossRefGoogle Scholar
  21. 21.
    Lee JH, Choi Y, Shin H, Lee J, Ryu S (2012) Complete genome sequence of Cronobacter sakazakii temperate bacteriophage phiES15. J Virol 86:7713–7714PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lee YD, Chang HI, Park JH (2011) Complete genomic sequence of virulent Cronobacter sakazakii phage ESSI-2 isolated from swine feces. Arch Virol 156:721–724PubMedCrossRefGoogle Scholar
  23. 23.
    Lee YD, Park JH, Chang HI (2011) Genomic sequence analysis of virulent Cronobacter sakazakii bacteriophage ES2. Arch Virol 156:2105–2108PubMedCrossRefGoogle Scholar
  24. 24.
    Lee YD, Kim JY, Park JH, Chang H (2012) Genomic analysis of bacteriophage ESP2949-1, which is virulent for Cronobacter sakazakii. Arch Virol 157:199–202PubMedCrossRefGoogle Scholar
  25. 25.
    Lee YD, Park JH (2012) Complete genome of temperate phage ENT39118 from Cronobacter sakazakii. J Virol 86:5400–5401PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Mullane NR, Iversen C, Healy B, Walsh C, Whyte P, Wall PG, Quinn T, Fanning S (2007) Enterobacter sakazakii an emerging bacterial pathogen with implications for infant health. Minerva Pediatr 59:137–148PubMedGoogle Scholar
  27. 27.
    Shin H, Lee JH, Kim Y, Ryu S (2012) Complete genome sequence of Cronobacter sakazakii bacteriophage CR3. J Virol 86:6367–6368PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Scholl D, Merril C (2005) The genome of bacteriophage K1F, a T7-like phage that has acquired the ability to replicate on K1 strains of Escherichia coli. J Bacteriol 187:8499–8503PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sulakvelidze A (2013) Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J Sci Food Agric 93:3137–3146PubMedCrossRefGoogle Scholar
  30. 30.
    Sun Y, Wang M, Wang Q, Cao B, He X, Li K, Feng L, Wang L (2012) Genetic analysis of the Cronobacter sakazakii O4 to O7 O-antigen gene clusters and development of a PCR assay for identification of all C. sakazakii O serotypes. Appl Environ Microbiol 78:3966–3974PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tóthová L, Celec P, Bábíčková J, Gajdošová J, Al-Alami H, Kamodyová N, Drahovská H, Liptáková A, Turňa J, Hodosy J (2011) Phage therapy of Cronobacter-induced urinary tract infection in mice. Med Sci Monit 17:BR173–BR178PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Turcovsky I, Kunikova K, Drahovska H, Kaclikova E (2011) Biochemical and molecular characterization of Cronobacter spp. (formerly Enterobacter sakazakii) isolated from foods. Antonie Leeuwenhoek 99:257–269PubMedCrossRefGoogle Scholar
  33. 33.
    Turner D, Reynolds D, Seto D, Mahadevan P (2013) CoreGenes3.5: a webserver for the determination of core genes from sets of viral and small bacterial genomes. BMC Res Notes 6(1):140PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    van Acker J, de Smet F, Muyldermans G, Bougatef A, Naessens A, Lauwers S (2001) Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J Clin Microbiol 39:293–297PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Yan QQ, Condell O, Power K, Butler F, Tall BD, Fanning S (2012) Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: a review of our current understanding of the biology of this bacterium. J Appl Microbiol 113:1–15PubMedCrossRefGoogle Scholar
  36. 36.
    Zuber S, Boissin-Delaporte C, Michot L, Iversen C, Diep B, Brussow H, Breeuwer P (2008) Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems. Microbial Biotechnol 1:532–543CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Michal Kajsík
    • 1
  • Lucia Oslanecová
    • 1
  • Tomáš Szemes
    • 3
  • Michalea Hýblová
    • 1
  • Andrea Bilková
    • 2
  • Hana Drahovská
    • 1
    Email author
  • Ján Turňa
    • 1
  1. 1.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.Faculty of PharmacyComenius UniversityBratislavaSlovakia
  3. 3.Geneton Ltd.BratislavaSlovakia

Personalised recommendations