Archives of Virology

, Volume 159, Issue 11, pp 2937–2948 | Cite as

Toll-like receptor 3 inhibits Newcastle disease virus replication through activation of pro-inflammatory cytokines and the type-1 interferon pathway

  • Jinghua Cheng
  • Yingjie Sun
  • Xiaorong Zhang
  • Fanqing Zhang
  • Shilei Zhang
  • Shengqing Yu
  • Xusheng Qiu
  • Lei Tan
  • Cuiping Song
  • Song Gao
  • Yantao WuEmail author
  • Chan DingEmail author
Original Article


Newcastle disease virus (NDV) is an avian paramyxovirus that can selectively replicate in and destroy human tumor cells. In this report, we demonstrate that NDV infection in HeLa cells leads to the activation of the pattern recognition Toll-like receptor 3 (TLR3). Overexpression of TLR3 enhanced the activity of the IFN-β promoter and the transcription factor NF-kappa B (NF-κB), thereby decreasing viral protein synthesis and the virus titer. In addition, the reduction of endogenous TLR3 by small interfering RNA (siRNA) increased NDV replication. Similar anti-NDV effects were observed in DF-1 chicken fibroblast cells with the exogenous expression of chicken TLR3 (cTLR3). Immunofluorescence staining of HeLa cells indicated that the dsRNA generated during NDV replication colocalized with TLR3 in punctate subcellular structures. Altogether, our results strongly suggest that TLR3 actively participates in the recognition of the innate pro-inflammatory response after NDV infection and leads to the consequent antiviral cytokine/interferon secretion.


Respiratory Syncytial Virus West Nile Virus Newcastle Disease Virus TLR3 Expression Newcastle Disease Virus Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Professor Takashi Fujita (Kyoto University, Japan) for providing the p125-luc plasmid. This work was financially supported by the Chinese National High-Tech R&D Program (2011AA10A209), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the China Agriculture Research System (CARS-41-K08), and the Chinese Special Fund for Agro-Scientific Research in the Public Interest (201003012 and 201303033).


  1. 1.
    Alexander D (1997) Newcastle disease and other avian Paramyxoviridae infections. In: Caineck BW (ed) Diseases of poultry. Iowa State University Press, Ames, pp 541–569Google Scholar
  2. 2.
    Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738PubMedCrossRefGoogle Scholar
  3. 3.
    Boukhvalova MS, Sotomayor TB, Point RC, Pletneva LM, Prince GA, Blanco JC (2010) Activation of interferon response through toll-like receptor 3 impacts viral pathogenesis and pulmonary toll-like receptor expression during respiratory syncytial virus and influenza infections in the cotton rat Sigmodon hispidus model. J Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res 30:229–242CrossRefGoogle Scholar
  4. 4.
    Doyle SE, O’Connell R, Vaidya SA, Chow EK, Yee K, Cheng G (2003) Toll-like receptor 3 mediates a more potent antiviral response than Toll-like receptor. J Immunol (Baltimore, Md: 1950) 170:3565–3571CrossRefGoogle Scholar
  5. 5.
    Fournier P, Wilden H, Schirrmacher V (2012) Importance of retinoic acid-inducible gene I and of receptor for type I interferon for cellular resistance to infection by Newcastle disease virus. Int J Oncol 40:287–298PubMedGoogle Scholar
  6. 6.
    Garcia-Sastre A, Biron CA (2006) Type 1 interferons and the virus-host relationship: a lesson in detente. Science (New York, NY) 312:879–882CrossRefGoogle Scholar
  7. 7.
    Goodbourn S, Didcock L, Randall RE (2000) Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81:2341–2364PubMedGoogle Scholar
  8. 8.
    Hewson CA, Jardine A, Edwards MR, Laza-Stanca V, Johnston SL (2005) Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. J Virol 79:12273–12279PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Isogawa M, Robek MD, Furuichi Y, Chisari FV (2005) Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol 79:7269–7272PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995PubMedCrossRefGoogle Scholar
  11. 11.
    Jiang Z, Zamanian-Daryoush M, Nie H, Silva AM, Williams BR, Li X (2003) Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem 278:16713–16719PubMedCrossRefGoogle Scholar
  12. 12.
    Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19–28PubMedCrossRefGoogle Scholar
  13. 13.
    Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105Google Scholar
  14. 14.
    Lamb RA, Griffin DE (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM (ed) Field virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1449–1496Google Scholar
  15. 15.
    Lau YF, Tang LH, Ooi EE, Subbarao K (2010) Activation of the innate immune system provides broad-spectrum protection against influenza A viruses with pandemic potential in mice. Virology 406:80–87PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Le Goffic R, Pothlichet J, Vitour D, Fujita T, Meurs E, Chignard M, Si-Tahar M (2007) Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 178:3368–3372Google Scholar
  17. 17.
    Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734PubMedCrossRefGoogle Scholar
  18. 18.
    Liang Z, Wu S, Li Y, He L, Wu M, Jiang L, Feng L, Zhang P, Huang X (2011) Activation of Toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-beta in cultured hepatoma cells. PLoS One 6:e23346PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Manuse MJ, Parks GD (2010) TLR3-dependent upregulation of RIG-I leads to enhanced cytokine production from cells infected with the parainfluenza virus SV5. Virology 397:231–241PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Matsumoto M, Seya T (2008) TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deliv Rev 60:805–812PubMedCrossRefGoogle Scholar
  21. 21.
    Menager P, Roux P, Megret F, Bourgeois JP, Le Sourd AM, Danckaert A, Lafage M, Prehaud C, Lafon M (2009) Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies. PLoS Pathog 5:e1000315PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Naka K, Dansako H, Kobayashi N, Ikeda M, Kato N (2006) Hepatitis C virus NS5B delays cell cycle progression by inducing interferon-beta via Toll-like receptor 3 signaling pathway without replicating viral genomes. Virology 346:348–362PubMedCrossRefGoogle Scholar
  23. 23.
    Nelson CB, Pomeroy BS, Schrall K, Park WE, Lindeman RJ (1952) An outbreak of conjunctivitis due to Newcastle disease virus (NDV) occurring in poultry workers. Am J Public Health Nation’s Health 42:672–678CrossRefGoogle Scholar
  24. 24.
    O’Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol 13:453–460PubMedCrossRefGoogle Scholar
  25. 25.
    Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4:161–167PubMedCrossRefGoogle Scholar
  26. 26.
    Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 314:997–1001Google Scholar
  27. 27.
    Pothlichet J, Meunier I, Davis BK, Ting JP, Skamene E, von Messling V, Vidal SM (2013) Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS Pathog 9:e1003256PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Romer-Oberdorfer A, Werner O, Veits J, Mebatsion T, Mettenleiter TC (2003) Contribution of the length of the HN protein and the sequence of the F protein cleavage site to Newcastle disease virus pathogenicity. J Gen Virol 84:3121–3129PubMedCrossRefGoogle Scholar
  29. 29.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108PubMedCrossRefGoogle Scholar
  30. 30.
    Seth RB, Sun L, Chen ZJ (2006) Antiviral innate immunity pathways. Cell Res 16:141–147PubMedCrossRefGoogle Scholar
  31. 31.
    Sun Y, Ding N, Ding SS, Yu S, Meng C, Chen H, Qiu X, Zhang S, Yu Y, Zhan Y, Ding C (2013) Goose RIG-I functions in innate immunity against Newcastle disease virus infections. Mol Immunol 53:321–327PubMedCrossRefGoogle Scholar
  32. 32.
    Sun Y, Yu S, Ding N, Meng C, Meng S, Zhang S, Zhan Y, Qiu X, Tan L, Chen H, Song C, Ding C (2014) Autophagy benefits the replication of newcastle disease virus in chicken cells and tissues. J Virol 88:525–537PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Ann Rev Immunol 21:335–376CrossRefGoogle Scholar
  34. 34.
    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820PubMedCrossRefGoogle Scholar
  35. 35.
    Taniguchi T, Takaoka A (2002) The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 14:111–116PubMedCrossRefGoogle Scholar
  36. 36.
    Trapp S, Derby NR, Singer R, Shaw A, Williams VG, Turville SG, Bess JW Jr, Lifson JD, Robbiani M (2009) Double-stranded RNA analog poly(I:C) inhibits human immunodeficiency virus amplification in dendritic cells via type I interferon-mediated activation of APOBEC3G. J Virol 83:884–895PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11:604–615PubMedCrossRefGoogle Scholar
  38. 38.
    Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373PubMedCrossRefGoogle Scholar
  39. 39.
    Wilson JR, de Sessions PF, Leon MA, Scholle F (2008) West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J Virol 82:8262–8271PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science (New York, NY) 301:640–643CrossRefGoogle Scholar
  41. 41.
    Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737PubMedCrossRefGoogle Scholar
  42. 42.
    Zamarin D, Palese P (2012) Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 7:347–367PubMedCrossRefGoogle Scholar
  43. 43.
    Zhou Y, Wang X, Liu M, Hu Q, Song L, Ye L, Zhou D, Ho W (2010) A critical function of toll-like receptor-3 in the induction of anti-human immunodeficiency virus activities in macrophages. Immunology 131:40–49PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Jinghua Cheng
    • 1
    • 2
  • Yingjie Sun
    • 2
  • Xiaorong Zhang
    • 1
  • Fanqing Zhang
    • 3
  • Shilei Zhang
    • 2
  • Shengqing Yu
    • 2
  • Xusheng Qiu
    • 2
  • Lei Tan
    • 2
  • Cuiping Song
    • 2
  • Song Gao
    • 1
  • Yantao Wu
    • 1
    Email author
  • Chan Ding
    • 2
    Email author
  1. 1.Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and ZoonosesCollege of Veterinary Medicine, Yangzhou UniversityYangzhouPeople’s Republic of China
  2. 2.Shanghai Veterinary Research InstituteChinese Academy of Agricultural SciencesShanghaiPeople’s Republic of China
  3. 3.College of Veterinary MedicineNanjing Agriculture UniversityNanjingPeople’s Republic of China

Personalised recommendations