Archives of Virology

, Volume 159, Issue 10, pp 2575–2586

Analysis of the phylogeny of Chinese H9N2 avian influenza viruses and their pathogenicity in mice

  • Zhongqing Lin
  • Chuantian Xu
  • Bin Liu
  • Yanhong Ji
  • Yuguang Fu
  • Jianhong Guo
  • Qiyun Zhu
Original Article

Abstract

We isolated nineteen strains of H9N2 influenza virus from farms across five northern Chinese provinces between 2001 and 2012. Sequence analysis of the genes for the two surface glycoproteins revealed that residue 226 of the hemagglutinin (HA) of eight isolates was a leucine. A T300I mutation in three strains resulted in the loss of a potential glycosylation site. The P315S mutation in seven strains added a potential glycosylation site in HA. The isolates CK/HN/323/08 and CK/HN/321/08 had a full-length neuraminidase (NA) that differed from those seen in other isolates. Phylogenetic and molecular analysis revealed that the nineteen strains shared common ancestry with strains BJ/94 and G1. We examined eight gene sequences in the present study and concluded that the HA and NS genes appeared to be derived directly from BJ/94. The remaining six genes evolved from different reference strains. Specifically, the NA and PA genes of CK/HN/321/08 and CK/HN/323/08 clustered with the G9 and Y439 branch, respectively, and the PB2 genes of CK/SD/513/11 and CK/GS/419/12 were in an unknown lineage. We found evidence that seven new genotypes had undergone intra-subtype reassortment. A mouse infection experiment with six selected isolates showed that five of these isolates were able to replicate in mouse lungs without adaptation. Viral replication in infected mice resulted in minimal weight loss, suggesting that these H9N2 avian influenza viruses had low virulence in mammals. Our findings highlight the genetic and biological diversity of H9N2 avian influenza viruses circulating in China and emphasize the importance in continuing surveillance of these viruses so as to better understand the potential risks they pose to humans.

Abbreviations

EID50

50 % egg infectious dose

HI

Hemagglutination-inhibition

HPAIV

Highly pathogenic avian influenza virus

LPAIV

Low pathogenic avian influenza virus

RBS

Receptor-binding site

RNP

Ribonucleoprotein

SA

Sialic acid

SPF

Specific-pathogen-free

References

  1. 1.
    Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50PubMedCrossRefGoogle Scholar
  2. 2.
    Ayllon J, Russell RJ, Garcia-Sastre A, Hale BG (2012) Contribution of NS1 effector domain dimerization to influenza A virus replication and virulence. J Virol 86:13095–13098PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bi Y, Lu L, Li J, Yin Y, Zhang Y, Gao H, Qin Z, Zeshan B, Liu J, Sun L, Liu W (2011) Novel genetic reassortants in H9N2 influenza A viruses and their diverse pathogenicity to mice. Virol J 8:505PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Butt KM, Smith GJ, Chen H, Zhang LJ, Leung YH, Xu KM, Lim W, Webster RG, Yuen KY, Peiris JS, Guan Y (2005) Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol 43:5760–5767PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chen B, Zhang Z, Chen W (1994) Isolation and preliminary serological characterization of type A influenza viruses from chickens. Chin J Vet Med (Chin) 22:3–5Google Scholar
  6. 6.
    Chen H, Deng G, Li Z, Tian G, Li Y, Jiao P, Zhang L, Liu Z, Webster RG, Yu K (2004) The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci USA 101:10452–10457PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O’Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7:1306–1312PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng VC, Chan JF, Wen X, Wu WL, Que TL, Chen H, Chan KH, Yuen KY (2011) Infection of immunocompromised patients by avian H9N2 influenza A virus. J Infect 62:394–399PubMedCrossRefGoogle Scholar
  9. 9.
    Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P (2007) A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog 3:1414–1421PubMedCrossRefGoogle Scholar
  10. 10.
    Cong YL, Pu J, Liu QF, Wang S, Zhang GZ, Zhang XL, Fan WX, Brown EG, Liu JH (2007) Antigenic and genetic characterization of H9N2 swine influenza viruses in China. J Gen Virol 88:2035–2041PubMedCrossRefGoogle Scholar
  11. 11.
    Dankar SK, Wang S, Ping J, Forbes NE, Keleta L, Li Y, Brown EG (2011) Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence. Virol J 8:13PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Deng G, Tan D, Shi J, Cui P, Jiang Y, Liu L, Tian G, Kawaoka Y, Li C, Chen H (2013) Complex reassortment of multiple subtypes of avian influenza viruses in domestic ducks at the Dongting Lake Region of China. J Virol 87:9452–9462PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ducatez MF, Webster RG, Webby RJ (2008) Animal influenza epidemiology. Vaccine 26(Suppl 4):D67–D69PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Dudek SE, Wixler L, Nordhoff C, Nordmann A, Anhlan D, Wixler V, Ludwig S (2011) The influenza virus PB1-F2 protein has interferon antagonistic activity. Biol Chem 392:1135–1144PubMedCrossRefGoogle Scholar
  15. 15.
    Fan S, Macken CA, Li C, Ozawa M, Goto H, Iswahyudi NF, Nidom CA, Chen H, Neumann G, Kawaoka Y (2013) Synergistic effect of the PDZ and p85beta-binding domains of the NS1 protein on virulence of an avian H5N1 influenza A virus. J Virol 87:4861–4871PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus AD (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79:2814–2822PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y (2013) Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus. N Engl J Med 368:1888–1897PubMedCrossRefGoogle Scholar
  18. 18.
    Garcia-Sastre A (2006) Antiviral response in pandemic influenza viruses. Emerg Infect Dis 12:44–47PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gray GC, Ferguson DD, Lowther PE, Heil GL, Friary JA (2011) A national study of US bird banders for evidence of avian influenza virus infections. J Clin Virol 51:132–135PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Guan Y, Shortridge KF, Krauss S, Webster RG (1999) Molecular characterization of H9N2 influenza viruses: Were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci 96:9363–9367PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Guan Y, Shortridge KF, Krauss S, Chin PS, Dyrting KC, Ellis TM, Webster RG, Peiris M (2000) H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol 74:9372–9380PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, Norwood M, Shortridge KF, Webster RG, Guan Y (2000) Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology 267:279–288PubMedCrossRefGoogle Scholar
  23. 23.
    Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842PubMedCrossRefGoogle Scholar
  24. 24.
    Homme PJ, Easterday BC (1970) Avian influenza virus infections. I. Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian Dis 14:66–74PubMedCrossRefGoogle Scholar
  25. 25.
    Huang Y, Hu B, Wen X, Cao S, Gavrilov BK, Du Q, Khan MI, Zhang X (2010) Diversified reassortant H9N2 avian influenza viruses in chicken flocks in northern and eastern China. Virus Res 151:26–32PubMedCrossRefGoogle Scholar
  26. 26.
    Ito T, Kawaoka Y (2000) Host-range barrier of influenza A viruses. Vet Microbiol 74:71–75PubMedCrossRefGoogle Scholar
  27. 27.
    Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA (2008) A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA 105:4381–4386PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Jia N, de Vlas SJ, Liu YX, Zhang JS, Zhan L, Dang RL, Ma YH, Wang XJ, Liu T, Yang GP, Wen QL, Richardus JH, Lu S, Cao WC (2009) Serological reports of human infections of H7 and H9 avian influenza viruses in northern China. J Clin Virol Off Publ Pan Am Soc Clin Virol 44:225–229CrossRefGoogle Scholar
  29. 29.
    Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, Liu W, Bu Z, Kawaoka Y, Chen H (2008) A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol 82:1146–1154PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kishida N, Sakoda Y, Eto M, Sunaga Y, Kida H (2004) Co-infection of Staphylococcus aureus or Haemophilus paragallinarum exacerbates H9N2 influenza A virus infection in chickens. Arch Virol 149:2095–2104PubMedCrossRefGoogle Scholar
  31. 31.
    Krug RM, Yuan W, Noah DL, Latham AG (2003) Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 309:181–189PubMedCrossRefGoogle Scholar
  32. 32.
    Lebarbenchon C, Chang CM, van der Werf S, Aubin JT, Kayser Y, Ballesteros M, Renaud F, Thomas F, Gauthier-Clerc M (2007) Influenza A virus in birds during spring migration in the Camargue, France. J Wildl Dis 43:789–793PubMedCrossRefGoogle Scholar
  33. 33.
    Lee YJ, Shin JY, Song MS, Lee YM, Choi JG, Lee EK, Jeong OM, Sung HW, Kim JH, Kwon YK, Kwon JH, Kim CJ, Webby RJ, Webster RG, Choi YK (2007) Continuing evolution of H9 influenza viruses in Korean poultry. Virology 359:313–323PubMedCrossRefGoogle Scholar
  34. 34.
    Li C, Yu K, Tian G, Yu D, Liu L, Jing B, Ping J, Chen H (2005) Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology 340:70–83PubMedCrossRefGoogle Scholar
  35. 35.
    Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79:12058–12064PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Li Z, Jiang Y, Jiao P, Wang A, Zhao F, Tian G, Wang X, Yu K, Bu Z, Chen H (2006) The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J Virol 80:11115–11123PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Matrosovich MN, Krauss S, Webster RG (2001) H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281:156–162PubMedCrossRefGoogle Scholar
  38. 38.
    Nfon C, Berhane Y, Pasick J, Kobinger G, Kobasa D, Babiuk S (2012) Prior infection of chickens with H1N1 avian influenza virus elicits heterologous protection against highly pathogenic H5N2. Vaccine 30:7187–7192PubMedCrossRefGoogle Scholar
  39. 39.
    Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW (2006) Large-scale sequence analysis of avian influenza isolates. Science 311:1576–1580PubMedCrossRefGoogle Scholar
  40. 40.
    Peiris M, Yuen KY, Leung CW, Chan KH, Ip PLS, Lai RWM, Orr WK, Shortridge KF (1999) Human infection with influenza H9N2. Lancet 354:916–917PubMedCrossRefGoogle Scholar
  41. 41.
    Ping J, Dankar SK, Forbes NE, Keleta L, Zhou Y, Tyler S, Brown EG (2010) PB2 and hemagglutinin mutations are major determinants of host range and virulence in mouse-adapted influenza A virus. J Virol 84:10606–10618PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Poon AFY, Ito K, Igarashi M, Miyazaki Y, Murakami T, Iida S, Kida H, Takada A (2011) Gnarled-trunk evolutionary model of influenza A virus hemagglutinin. PloS One 6:e25953CrossRefGoogle Scholar
  43. 43.
    Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Epidemiol 27:493–497Google Scholar
  44. 44.
    Schmolke M, Manicassamy B, Pena L, Sutton T, Hai R, Varga ZT, Hale BG, Steel J, Perez DR, Garcia-Sastre A (2011) Differential contribution of PB1-F2 to the virulence of highly pathogenic H5N1 influenza A virus in mammalian and avian species. PLoS Pathog 7:e1002186PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Shortridge KF (1992) Pandemic influenza: a zoonosis? Semin Respir Infect 7:11–25PubMedGoogle Scholar
  46. 46.
    Skehel JJ, Wiley DC (2000) Receptor Binding And Membrane Fusion In Virus Entry: The Influenza Hemagglutinin. Annu Rev Biochem 69:531–569PubMedCrossRefGoogle Scholar
  47. 47.
    Sun Y, Pu J, Jiang Z, Guan T, Xia Y, Xu Q, Liu L, Ma B, Tian F, Brown EG, Liu J (2010) Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008. Vet Microbiol 146:215–225PubMedCrossRefGoogle Scholar
  48. 48.
    Sun Y, Tan Y, Wei K, Sun H, Shi Y, Pu J, Yang H, Gao GF, Yin Y, Feng W, Perez DR, Liu J (2013) Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. J Virol 87:2963–2968PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  50. 50.
    Tombari W, Paul M, Bettaieb J, Larbi I, Nsiri J, Elbehi I, Gribaa L, Ghram A (2013) Risk factors and characteristics of low pathogenic avian influenza virus isolated from commercial poultry in Tunisia. PloS One 8:e53524PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, Ellison JA, Davis CT, York IA, Turmelle AS, Moran D, Rogers S, Shi M, Tao Y, Weil MR, Tang K, Rowe LA, Sammons S, Xu X, Frace M, Lindblade KA, Cox NJ, Anderson LJ, Rupprecht CE, Donis RO (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci USA 109:4269–4274PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Tosh C, Nagarajan S, Behera P, Rajukumar K, Purohit K, Kamal RP, Murugkar HV, Gounalan S, Pattnaik B, Vanamayya PR, Pradhan HK, Dubey SC (2008) Genetic analysis of H9N2 avian influenza viruses isolated from India. Arch Virol 153:1433–1439PubMedCrossRefGoogle Scholar
  53. 53.
    Wan H, Sorrell EM, Song H, Hossain MJ, Ramirez-Nieto G, Monne I, Stevens J, Cattoli G, Capua I, Chen L-M, Donis RO, Busch J, Paulson JC, Brockwell C, Webby R, Blanco J, Al-Natour MQ, Perez DR (2008) Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PloS One 3:e2923PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Wang C, Takeuchi K, Pinto LH, Lamb RA (1993) Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block. J Virol 67:5585–5594PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang J, Sun Y, Xu Q, Tan Y, Pu J, Yang H, Brown EG, Liu J (2012) Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence. PloS One 7:e40752PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Xu K, Ferreri L, Rimondi A, Olivera V, Romano M, Ferreyra H, Rago V, Uhart M, Chen H, Sutton T, Pereda A, Perez DR (2012) Isolation and characterization of an H9N2 influenza virus isolated in Argentina. Virus Res 168:41–47PubMedCrossRefGoogle Scholar
  57. 57.
    Xu KM, Smith GJ, Bahl J, Duan L, Tai H, Vijaykrishna D, Wang J, Zhang JX, Li KS, Fan XH, Webster RG, Chen H, Peiris JS, Guan Y (2007) The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. J Virol 81:10389–10401PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Xu X, Subbarao K, Cox NJ, Guo Y (1999) Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261:15–19PubMedCrossRefGoogle Scholar
  59. 59.
    Yu H, Hua RH, Wei TC, Zhou YJ, Tian ZJ, Li GX, Liu TQ, Tong GZ (2008) Isolation and genetic characterization of avian origin H9N2 influenza viruses from pigs in China. Vet Microbiol 131:82–92PubMedCrossRefGoogle Scholar
  60. 60.
    Zell R, Krumbholz A, Wutzler P (2006) Influenza A virus PB1-F2 gene. Emerg Infect Dis 12:1607–1608 (author reply 1608–1609)Google Scholar
  61. 61.
    Zhang P, Tang Y, Liu X, Peng D, Liu W, Liu H, Lu S (2008) Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China during a 5 year period (1998-2002). J Gen Virol 89:3102–3112PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang P, Tang Y, Liu X, Liu W, Zhang X, Liu H, Peng D, Gao S, Wu Y, Zhang L, Lu S (2009) A novel genotype H9N2 influenza virus possessing human H5N1 internal genomes has been circulating in poultry in eastern China since 1998. J Virol 83:8428–8438PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Zhang Q, Shi J, Deng G, Guo J, Zeng X, He X, Kong H, Gu C, Li X, Liu J, Wang G, Chen Y, Liu L, Liang L, Li Y, Fan J, Wang J, Li W, Guan L, Li Q, Yang H, Chen P, Jiang L, Guan Y, Xin X, Jiang Y, Tian G, Wang X, Qiao C, Li C, Bu Z, Chen H (2013) H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science 341:410–414PubMedCrossRefGoogle Scholar
  64. 64.
    Zhu Q, Yang H, Chen W, Cao W, Zhong G, Jiao P, Deng G, Yu K, Yang C, Bu Z, Kawaoka Y, Chen H (2008) A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. J Virol 82:220–228PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Zhu X, Yang H, Guo Z, Yu W, Carney PJ, Li Y, Chen LM, Paulson JC, Donis RO, Tong S, Stevens J, Wilson IA (2012) Crystal structures of two subtype N10 neuraminidase-like proteins from bat influenza A viruses reveal a diverged putative active site. Proc Natl Acad Sci USA 109:18903–18908PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Zhu X, Yu W, McBride R, Li Y, Chen LM, Donis RO, Tong S, Paulson JC, Wilson IA (2013) Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc Natl Acad Sci USA 110:1458–1463PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Zhongqing Lin
    • 1
  • Chuantian Xu
    • 2
  • Bin Liu
    • 1
  • Yanhong Ji
    • 1
  • Yuguang Fu
    • 1
  • Jianhong Guo
    • 1
  • Qiyun Zhu
    • 1
  1. 1.The State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhouPeople’s Republic of China
  2. 2.Institute of Animal Science and Veterinary MedicineShandong Academy of Agricultural ScienceJinanPeople’s Republic of China

Personalised recommendations