Archives of Virology

, Volume 159, Issue 6, pp 1403–1412 | Cite as

Pathological and microbiological findings from mortality of the Chinese giant salamander (Andrias davidianus)

  • Yan Meng
  • Jie Ma
  • Nan Jiang
  • Ling-Bing Zeng
  • Han-Bing Xiao
Original Article


The Chinese giant salamander, Andrias davidianus, is a nationally protected and cultured species in China. Recently, a severe epizootic occurred in cultured Chinese giant salamanders in Hubei, Hunan, Sichuan, Shaanxi, and Zhejiang provinces of China, causing substantial economic losses. The typical clinical signs of diseased larval animals were jaw and abdominal swelling and subcutaneous hemorrhaging. Diseased adult animals exhibited skin hemorrhages, ulceration of the hind limbs, and multiple hemorrhagic spots in the visceral organs. Histopathological observation indicated tissue necrosis and cytoplasmic inclusions in the spleen, liver and kidney, suggestive of viral disease. A viral agent was isolated from affected tissues in cell culture. The virus was determined to be pathogenic after experimental infection. Electron microscopy revealed iridovirus-like virions with a size of 140-180 nm in diameter inside the kidney of naturally infected animals and in cell culture. The major capsid protein (MCP) of the virus exhibited 98-99 % sequence identity to ranaviruses. Additionally, phylogenetic analysis indicated that the virus belonged to the genus Ranavirus. Comparative analysis of the MCP gene sequence with those of other viruses previously isolated from Chinese giant salamanders revealed that these isolates were highly similar, although a few variations were observed. The virus was preliminarily named Chinese giant salamander iridovirus (GSIV).


Cytoplasmic Inclusion Unweighted Pair Group Method With Arithmetic Major Caspid Protein Lymphoid Nodule Water Frog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr. Jie Huang, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, for help with histopathology. This work was supported by the Special Fund for Agro-Scientific Research in the Public Interest (201203086) and the National Nonprofit Institute Research Grant of Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences (2013JBFZ02).


  1. 1.
    Hou JH, Zhu BC, Dong YW, Li PQ, Liu HM, Wan XQ (2004) Research advances of Chinese giant salamander, Andrias davidianus. Sichuan J Zool 22:262–267Google Scholar
  2. 2.
    Wang XM, Zhang KJ, Wang ZH, Ding YZ, Wu W, Huang S (2004) The decline of the Chinese giant salamander Andrias davidianus and implications for its conservation. Oryx 38:197–202CrossRefGoogle Scholar
  3. 3.
    Zhang KJ, Wang XM, Wu W, Wang ZH, Huang S (2002) Advances in conservation biology of Chinese giant salamander. Biodiversity Sci 10:291–297Google Scholar
  4. 4.
    Hyatt AD, Williamson M, Coupar BEH, Middleton D, Hengstberger SG, Gould AR, Selleck P, Wise TG, Kattenbelt J, Cunningham AA, Lee J (2002) First identification of a ranavirus from green pythons (Chondropython viridis). J Wildl Dis 38:239–252PubMedCrossRefGoogle Scholar
  5. 5.
    Lu L, Zhou SY, Chen C, Weng SP, Chan SM, He JG (2005) Complete genome sequence analysis of an iridovirus isolated from the orange-spotted grouper, Epinephelus coioides. Virology 339:81–100. doi: 10.1016/j.virol.2005.05.021 PubMedCrossRefGoogle Scholar
  6. 6.
    Wang Q, Zeng WW, Li KB, Chang OQ, Liu C, Wu GH, Shi CB, Wu SQ (2011) Outbreaks of an iridovirus in marbled sleepy goby, Oxyeleotris marmoratus (Bleeker), cultured in southern China. J Fish Dis 34:399–402. doi: 10.1111/j.1365-2761.2011.01244.x PubMedCrossRefGoogle Scholar
  7. 7.
    Whittington RJ, Becker JA, Dennis MM (2010) Iridovirus infections in finfish-critical review with emphasis on ranaviruses. J Fish Dis 33:95–122. doi: 10.1111/j.1365-2761.2009.01110.x PubMedCrossRefGoogle Scholar
  8. 8.
    Bollinger TK, Mao JH, Schock D, Brigham RM, Gregory V (1999) Pathology, isolated and preliminary molecular characterization of a novel iridovirus from tiger salamander in Saskatchewan. J Wildl Dis 35:413–429PubMedCrossRefGoogle Scholar
  9. 9.
    Majji S, LaPatra S, Long SM, Sample R, Locke B, Sinning A, Chinchar VG (2006) Rana catesbeiana virus Z (RCV-Z), a novel pathogenic strain of frog virus 3. Dis Aquat Org 73:1–11. doi: 10.3354/dao073001 PubMedCrossRefGoogle Scholar
  10. 10.
    Marschang RE, Becher P, Posthaus H, Wild P, Thiel HJ, Doblies UM, Kaleta EF, Bacciarini LN (1999) Isolation and characterization of an iridovirus from Hermann’s tortoises (Testudo hermanni). Arch Virol 144:1909–1922. doi: 10.1007/s007050050714 PubMedCrossRefGoogle Scholar
  11. 11.
    Mao JH, Green DE, Fellers G, Chinchar VG (1999) Molecular characterization of iridoviruses isolated from sympatric amphibians and fish. Virus Res 63:45–52. doi: 10.1016/S0168-1702 PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang QY, Xiao F, Li ZQ, Gui JF, Mao JH (2001) Characterization of an iridovirus from the cultured pig frog (Rana frylio) with lethal syndrome. Dis Aquat Org 48:27–36PubMedCrossRefGoogle Scholar
  13. 13.
    He JG, Lu L, Deng M, He HH, Weng SP, Wang XH, Zhou SY, Long QX, Wang XZ (2002) Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology 292:185–197. doi: 10.1006/viro.2001.1245 PubMedCrossRefGoogle Scholar
  14. 14.
    Geng Y, Wang KY, Zhou ZY, Li CW (2011) First report of a Ranavirus associated with morbidity and mortality in farmed Chinese giant salamanders (Andrias davidianus). J Comp Path 145:95–102 10.1016/j.jcpa.2010.11.012PubMedCrossRefGoogle Scholar
  15. 15.
    Dong W, Zhang X, An J, Qin J, Song F, Zeng W (2011) Iridovirus infection in Chinese Giant Salamanders, China, 2010. Emerging Infect Dis 17:2388–2389. doi: 10.3201/eid1712.101758 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Jiang YL, Zhang W, Jing HL, Gao LY (2011) Isolation and characterization of an Iridovirus from sick Giant salamander (Andrias davidianus). Chin J virol 27:274–282Google Scholar
  17. 17.
    Fijan N, Sulimanovic D, Bearzotti M, Muzinic D, Zwillenberg LO, Chilmonczyk M, Vautherot JF, Kinkelin PD (1983) Some properties of the epithelioma papulosum cyprini (EPC) cell line from carp cyprinus carpio. Ann Virol (Inst. Pasteur) 134E:207–220. doi: 10.1016/j.bbr.2011.03.031 CrossRefGoogle Scholar
  18. 18.
    Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497Google Scholar
  19. 19.
    Hoshino K, Isawa H, Tsuda Y, Yano K, Sasaki T, Yuda M, Takasaki T, Kobayashi M, Sawabe K (2007) Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 359:405–414. doi: 10.1016/j.virol.2006.09.039 PubMedCrossRefGoogle Scholar
  20. 20.
    Daszak P, Berger L, Cunningham AA, Hyatt AD, Green E, Speare R (1999) Emerging infectious diseases and amphibian population declines. Emerg Infect Dis 5:735–748PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Duffus AL, Pauli BD, Wozney K, Brunetti CR, Berrill M (2008) Frog virus 3-like infections in aquatic amphibian communities. J Wildl Dis 44:109–120PubMedCrossRefGoogle Scholar
  22. 22.
    Gray MJ, Miller DL, Hoverman JT (2009) Ecology and pathology of amphibian ranaviruses. Dis Aquat Org 87:243–266. doi: 10.3354/dao02138 PubMedCrossRefGoogle Scholar
  23. 23.
    Roberr J, Abramowitz L, Gantress J, Morales HD (2007) Xenopus laevis, a possible vector of ranavirus infection? J Wildl Dis 43:645–652CrossRefGoogle Scholar
  24. 24.
    Schock DM, Bollinger TK, Collins JP (2009) Mortality rates differ among Amphibian populations exposed to three strains of a lethal Ranavirus. Eco Health 6:438–448. doi: 10.1007/s10393-010-0279-0 PubMedGoogle Scholar
  25. 25.
    Kik M, Martel A, Sluijs AS, Pasmans F, Wohlsein P, Grone A, Rijks JM (2011) Ranavirus-associated mass mortality in wild amphibians, The Netherlands, 2010, a first report. Vet J 190:284–286. doi: 10.1006/viro.2001.1245 PubMedCrossRefGoogle Scholar
  26. 26.
    Baslserio A, Dalton KP, Cerro DA, Márquez I, Parra F, Prieto JM, Casais R (2010) Outbreak of common midwife toad virus in alpine newts (Mesotriton alpestris cyreni) and common midwife toads (Alytes obstetricans) in Northern Spain. A comparative pathological study of an emerging ranavirus. Vet J 186:256–258. doi: 10.1016/j.tvjl.2009.07.038 CrossRefGoogle Scholar
  27. 27.
    Pessier AP (2002) An overview of amphibian skin disease. Semin Avian Exot Pet 11:162–174CrossRefGoogle Scholar
  28. 28.
    Cunningham AA, Langton TE, Bennett PM, Drury SE, Gough RE, Macgregor SK (1996) Pathological and microbiological findings from incidents of unusual mortality of the common frog (Rana temporaria). Philos Trans R Soc Lond B Biol Sci 351:1539–1557. doi: 10.1098/rstb.1996.0140 PubMedCrossRefGoogle Scholar
  29. 29.
    Jancovich JK, Davidson EW, Morado JF, Jacobs BL, Cliilins JP (1997) Isolation of a lethal virus from the endangered tiger salamander Ambystoma tigdnum stebbinsi. Dis Aquat Org 31:161–167CrossRefGoogle Scholar
  30. 30.
    Plumb JA (2001) Disease recognition and diagnosis of fish. In: Coimbra J (ed) Modern aquaculture in the coastal zone. IOS Press, Amsterdam, pp 145–154Google Scholar
  31. 31.
    Miller DL, Gray MJ (2010) Amphibian decline and mass mortality, the value of visualizing ranavirus in tissue sections. Vet J 186:133–134. doi: 10.1016/j.tvjl.2009.08.031 PubMedCrossRefGoogle Scholar
  32. 32.
    Goorha R (1982) Frog virus 3 DNA replication occurs in two stages. J Virol 43:519–528PubMedCentralPubMedGoogle Scholar
  33. 33.
    Tidona CA, Schnitzler P, Kehm R, Darai G (1998) Is the major capsid protein of iridoviruses a suitable target for the study of viral evolution? Virus Genes 16:59–66. doi: 10.1023/A:1007949710031 PubMedCrossRefGoogle Scholar
  34. 34.
    Webby R, Kalmakoff J (1998) Sequence comparison of the major capsid protein gene from 18 diverse iridoviruses. Arch Virol 143:1949–1966PubMedCrossRefGoogle Scholar
  35. 35.
    Ward CW (1993) Progress towards a higher taxonomy of viruses. Res Virol (Institute Pasteur) 144:419–453Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Yan Meng
    • 1
    • 2
  • Jie Ma
    • 1
  • Nan Jiang
    • 1
  • Ling-Bing Zeng
    • 1
  • Han-Bing Xiao
    • 1
  1. 1.Yangtze River Fisheries Research InstituteChinese Academy of Fishery SciencesWuhanChina
  2. 2.Freshwater Fisheries Research CenterChinese Academy of Fishery SciencesWuxiChina

Personalised recommendations