Archives of Virology

, Volume 159, Issue 3, pp 425–435

Topical application of polyethylenimine as a candidate for novel prophylactic therapeutics against genital herpes caused by herpes simplex virus

  • Kyoko Hayashi
  • Hiroki Onoue
  • Kohei Sasaki
  • Jung-Bum Lee
  • Penmetcha K. R. Kumar
  • Subash C. B. Gopinath
  • Yoshie Maitani
  • Takashi Kai
  • Toshimitsu Hayashi
Original Article

Abstract

Herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) cause genital herpes, which can enhance the acquisition of human immunodeficiency virus. The development of anti-HSV agents with novel mechanisms of action is urgently required in the topical therapy of genital herpes. In this study, the in vitro and in vivo anti-HSV effects of Epomin SP-012®, a highly cationic polyethylenimine, were evaluated. When the in vitro antiviral effects of SP-012 were assessed, this compound showed potent activity against HSV-1 and HSV-2. It inhibited the attachment of HSV-2 to host cells and cell-to-cell spread of infection in a concentration-dependent manner and exerted a virucidal effect. No SP-012-resistant HSV-2 was found when the virus was successively passaged in the presence of SP-012. In a mouse genital herpes model, topically administered SP-012 inhibited the progression of the disease caused by HSV infection. These data illustrate that SP-012 may be a novel class of HSV inhibitor that would be acceptable for long-term topical application.

References

  1. 1.
    Weiss H (2007) Epidemiology of herpes simplex virus type 2 infection in the developing world. Herpes 11(Suppl. 1):24A–35AGoogle Scholar
  2. 2.
    Wang K, Lau TY, Marales M, Mont EK, Straus SE (2005) Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal ganglia at the single-cell level. J Virol 79:14079–14087PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Benedetti J, Corey L, Ashley R (1994) Recurrence rates in genital herpes after symptomatic first-episode infection. Ann Intern Med 121:847–854PubMedCrossRefGoogle Scholar
  4. 4.
    Tobian AA, Ssempijja V, Kigozi G, Oliver AE, Serwadda D, Makumbi F et al (2009) Incident HIV and herpes simplex virus type 2 infection among men in Rakai, Uganda. AIDS 23:1589–1594PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Freeman E, Weiss H, Glynn JR, Cross PL, Whitworth JA, Hayes RJ (2006) Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20:73–83PubMedCrossRefGoogle Scholar
  6. 6.
    Roberts CM, Pfister JR, Spear SJ (2003) Increasing proportion of herpes simplex virus type 1 as a cause of genital herpes infection in college students. Sex Transm Dis 30:797–800PubMedCrossRefGoogle Scholar
  7. 7.
    Gilbert M, Li X, Petric M, Krajden M, Isaac-Renton JL, Ogilvie G et al (2011) Using centralized laboratory data to monitor trends in herpes simplex virus type 1 and 2 infection in British Columbia and the changing etiology of genital herpes. Can J Public Health 102:225–229PubMedGoogle Scholar
  8. 8.
    Boussif O, Lezoulch F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo: polyethlenimine. Proc Natl Acad Sci USA 92:7297–7301PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Baker A, Saltik M, Lehrmann H, Killisch I, Mautner V, Lamm G et al (1997) Polyethylenimine (PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery. Gene Ther 4:773–782PubMedCrossRefGoogle Scholar
  10. 10.
    Haldar J, Chen J, Tumpey TM, Gubareva LV, Klibanov AM (2008) Hydrophobic polycationic coatings inactivate wild-type and zanamivir- and/or oseltamivir-resistant human and avian influenza viruses. Biotechnol Lett 30:475–479PubMedCrossRefGoogle Scholar
  11. 11.
    Larson AM, Oh HS, Knipe DM, Klibanov AM (2013) Decreasing herpes simplex viral infectivity in solution by surface-immobilized and suspended N, N-dodecyl, methyl-polyethylenimine. Pharm Res 30:25–31PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Owada T, Miyashita Y, Motomura T, Onishi M, Yamashita S, Yamamoto N (1998) Enhancement of human immunodeficiency virus type 1 (HIV-1) infection via increased membrane fluidity by a cationic polymer. Microbiol Immunol 42:97–107PubMedCrossRefGoogle Scholar
  13. 13.
    Spoden GA, Besold K, Krauter S, Plachter B, Hanik N, Kilbinger AFM et al (2012) Polyethylenimine is a strong inhibitor of human papillomavirus and cytomegalovirus infection. Antimicrob Agents Chemother 56:75–82PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Engel P, Hein L, Spiess AC (2012) Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis. Biotech Biofuels 5:77–84CrossRefGoogle Scholar
  15. 15.
    Dong CX, Hayashi K, Mizukoshi Y, Lee JB, Hayashi T (2012) Structures and anti-HSV-2 activities of neutral polysaccharides from an edible plant, Basella rubra L. Int J Biol Macromol 50:245–249PubMedCrossRefGoogle Scholar
  16. 16.
    Kanekiyo K, Hayashi K, Takenaka H, Lee JB, Hayashi T (2007) Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme. Bio Pharm Bull 30:1573–1575CrossRefGoogle Scholar
  17. 17.
    Huang AS, Wagner RR (1964) Penetration of herpes simplex virus into human epidermoid cells. Proc Soc Exp Biol Med 116:863–869PubMedCrossRefGoogle Scholar
  18. 18.
    Kaushic C, Ashkar AA, Reid LA, Rosenthal KL (2003) Progesterone increases susceptibility and decrease immune responses to genital herpes infection. J Virol 77:4558–4565PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ekblad M, Bergstrom T, Banwell MG, Bonnet M, Renner J, Ferro V et al (2006) Anti-herpes simplex virus activities of two novel disulphated cyclitols. Antivir Chem Chemother 17:97–106PubMedGoogle Scholar
  20. 20.
    Payne CK, Jones SA, Chen C, Zhuang X (2007) Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands. Traffic 8:389–401PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Nagot N, Ouedraogo A, Foulongne V, Konate I, Weiss HA, Vergne L et al (2007) Reduction of HIV-1 RNA levels with therapy to suppress herpes simplex virus. N Engl J Med 356:790–799PubMedCrossRefGoogle Scholar
  22. 22.
    Celum C, Wald A, Hughes J, Sanchez J, Reid S, Delany-Morelwe S et al (2008) Effect of acyclovir on HIV-1 acquisition in herpes simplex virus 2 seropositive women and men who have sex with men: a randomised, double-blind, placebo-controlled trial. Lancet 371:2109–2119PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Lisco A, Vanpouille C, Tchesnokov EP, Grivel JC, Biancetto A, Brichacek B et al (2008) Acyclovir is activated into a HIV-1 reverse transcriptase inhibition in herpesvirus-infected human tissues. Cell Host Microbe 4:260–270PubMedCrossRefGoogle Scholar
  24. 24.
    Watson-Jones D, Weiss HA, Rusizoka M, Changalucha J, Baisley K, Mugeye K et al (2008) Effect of herpes simplex suppression on incidence of HIV among women in Tanzania. N Engl J Med 358:1560–1571PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Zamora JL (1986) Chemial and microbiologic characteristics and toxicity of povidone-iodine solutions. Am J Surg 151:400–406PubMedCrossRefGoogle Scholar
  26. 26.
    Käsermann F, Wyss K, Kempf C (2001) Virus inactivation and protein modification by ethyleneimines. Antiviral Res 52:33–41PubMedCrossRefGoogle Scholar
  27. 27.
    Bacon TH, Levin MJ, Leary JJ, Sarisky RT, Sutton D (2003) Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev 16:114–128PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Shin YK, Cai GY, Weinberg A, Leary JJ, Levin MJ (2001) Frequency of acyclovir-resistant herpes simplex virus in clinical specimens and laboratory isolates. J Clin Microbiol 39:913–917PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Stranska R, Schuurman R, Nienhuis E (2005) Survey of acyclovir-resistant herpes simplex virus in the Netherlands: prevalence and characterization. J Clin Virol 32:7–18PubMedCrossRefGoogle Scholar
  30. 30.
    Mettenleiter TC (1994) Initiation and spread of α-herpesvirus infections. Trends Microbiol 2:2–4PubMedCrossRefGoogle Scholar
  31. 31.
    Hsu BB, Yinn Wong S, Hammond PT, Chen J, Klibanov AM (2011) Mechanism of inactivation of influenza viruses by immobilized hydrophobic polycations. Proc Natl Acad Sci USA 108:61–66PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Seib FP, Jones AT, Duncan R (2007) Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. J Control Release 117:291–300PubMedCrossRefGoogle Scholar
  33. 33.
    Haldar J, An D, Alvarez de Cienfuegos L, Chen J, Klibanov AM (2006) Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci USA 103:17667–17671PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Kyoko Hayashi
    • 1
  • Hiroki Onoue
    • 1
  • Kohei Sasaki
    • 1
  • Jung-Bum Lee
    • 1
  • Penmetcha K. R. Kumar
    • 2
  • Subash C. B. Gopinath
    • 2
  • Yoshie Maitani
    • 3
  • Takashi Kai
    • 4
  • Toshimitsu Hayashi
    • 1
  1. 1.Gradutae School of Medicine and Pharmaceutical Sciences for ResearchUniversity of ToyamaToyamaJapan
  2. 2.Biomedical Research Institute, Central 6National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  3. 3.Institute of Medicinal ChemistryHoshi UniversityTokyoJapan
  4. 4.Nippon Shokubai Co. Ltd.TokyoJapan

Personalised recommendations