Archives of Virology

, Volume 159, Issue 2, pp 267–275 | Cite as

Combined administration of oseltamivir and hochu-ekki-to (TJ-41) dramatically decreases the viral load in lungs of senescence-accelerated mice during influenza virus infection

  • Eriko Ohgitani
  • Masakazu Kita
  • Osam Mazda
  • Jiro Imanishi
Original Article

Abstract

To enhance the effect of anti-influenza-virus agent treatment, the effect of combined administration of oseltamivir phosphate and hochu-ekki-to (Japanese traditional herbal medicine, HET) on early viral clearance was examined. Senescence-accelerated mice were given HET in drinking water for 2 weeks, followed by intranasal infection with influenza A virus strain PR8. After 4 hours of infection, oseltamivir was administered orally for 5 days. The viral loads in the lungs of the group receiving combined treatment were dramatically lower when compared with the viral loads in the lungs of the group receiving oseltamivir alone. HET significantly increased the induction of IL-1β and TNF-α in the lungs of PR8-infected mice and stimulated alveolar macrophage phagocytosis. From these results, we conclude that these functions may be responsible the increased effect on viral load reduction. Here, we show that the combined administration of oseltamivir and HET is very useful for influenza treatment in senescence-accelerated mice.

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 19590697 and Japan Kampo Medicines Manufacturers Association.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Webster RG, Wright SM, Castrucci MR, Bean WJ, Kawaoka Y (1993) Influenza–a model of an emerging virus disease. Intervirology 35(1–4):16–25PubMedGoogle Scholar
  2. 2.
    Webby RJ, Webster RG (2003) Are we ready for pandemic influenza? Science 302:1519–1522PubMedCrossRefGoogle Scholar
  3. 3.
    Morse SS, Mazet JA, Daszak P et al (2012) Prediction and prevention of the next pandemic zoonosis. Lancet 380:1956–1965PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Garten RJ, Davis CT, Cox NJ et al (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325(5937):197–201PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Cheng VC, To KK, Tse H, Hung IF, Yuen KY (2012) Two years after pandemic influenza A/2009/H1N1: what have we learned? Clin Microbiol Rev 25(2):223–263PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Dawood FS, Iuliano AD, Widdowson MA et al (2012) Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis 12(9):687–695PubMedCrossRefGoogle Scholar
  7. 7.
    Perez, Sorrell EM, Donis RO (2005) Avian influenza: an omnipresent pandemic threat. Pediatr Infect Dis J 24(11 Suppl):S208–S216 discussion S215PubMedCrossRefGoogle Scholar
  8. 8.
    Yong E (2012) Influenza: Five questions on H5N1 Nature 486:456–458Google Scholar
  9. 9.
    Imai M, Watanabe T, Kawaoka Y et al (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428PubMedCentralPubMedGoogle Scholar
  10. 10.
    Herfst S, Schrauwen EJ, Fouchier RA et al (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336(6088):1534–1541PubMedCrossRefGoogle Scholar
  11. 11.
    Russell CA, Fonville JM, Smith DJ et al (2012) The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science 336(6088):1541–1547PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Calfee DP, Hayden FG (1998) New approaches to influenza chemotherapy. Neuraminidase inhibitors. Drugs 56(4):537–553PubMedCrossRefGoogle Scholar
  13. 13.
    Kim CU, Chen X, Mendel DB (1999) Neuraminidase inhibitors as anti-influenza virus agents. Antivir Chem Chemother 10(4):141–154PubMedGoogle Scholar
  14. 14.
    Bardsley-Elliot A, Noble S (1999) Oseltamivir. Drugs 58(5):851–860 discussion 861–862PubMedCrossRefGoogle Scholar
  15. 15.
    Sidwell RW, Smee DF (2000) In vitro and in vivo assay systems for study of influenza virus inhibitors. Antiviral Res 48(1):1–16PubMedCrossRefGoogle Scholar
  16. 16.
    Kashiwagi S, Yoshida S, Yamaguchi F et al (2012) Clinical efficacy of long-acting neuraminidase inhibitor laninamivir octanoate hydrate in postmarketing surveillance. J Infect Chemother [Epub ahead of print]Google Scholar
  17. 17.
    Ison MG, Hui DS, Alexander WJ et al (2012) A clinical trial of intravenous peramivir compared with oral oseltamivir for the treatment of seasonal influenza in hospitalized adults. Antivir Ther [Epub ahead of print]Google Scholar
  18. 18.
    Feng E, Ye D, Liu H et al (2012) Recent advances in neuraminidase inhibitor development as anti-influenza drugs. ChemMedChem 7(9):1527–1536PubMedCrossRefGoogle Scholar
  19. 19.
    CDC HEALTH ADVISORY (2006) CDC recommends against the use of amantadine and rimantadine for the treatment or prophylaxis of influenza in the United States during the 2005–06 influenza season. CDCHAN-00240-2006-01-14-ADV-NGoogle Scholar
  20. 20.
    Deyde VM, Xu X, Klimov AI et al (2007) Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J Infect Dis 196(2):249–257PubMedCrossRefGoogle Scholar
  21. 21.
    Reece PA (2007) Presence of oseltamivir-resistant pandemic A/H1N1 minor variants before drug therapy with subsequent selection and transmission. J Med Virol 79(10):1577–1586PubMedCrossRefGoogle Scholar
  22. 22.
    Järhult JD (2012) Oseltamivir (Tamiflu(®)) in the environment, resistance development in influenza A viruses of dabbling ducks and the risk of transmission of an oseltamivir-resistant virus to humans—a review. Infect Ecol Epidemiol 2:18385Google Scholar
  23. 23.
    Ghedin E, Holmes EC, Boivin G et al (2012) Presence of oseltamivir-resistant pandemic A/H1N1 minor variants before drug therapy with subsequent selection and transmission. J Infect Dis 206(10):1504–1511PubMedCrossRefGoogle Scholar
  24. 24.
    Boivin G, Coulombe Z, Wat C (2003) Quantification of the influenza virus load by real-time polymerase chain reaction in nasopharyngeal swabs of patients treated with oseltamivir. J Infect Dis 188(4):578–580PubMedCrossRefGoogle Scholar
  25. 25.
    Nicholson KG, Aoki FY, Osterhaus AD et al (2000) Efficacy and safety of oseltamivir in treatment of acute influenza: a randomised controlled trial. Lancet 355:1845–1850PubMedCrossRefGoogle Scholar
  26. 26.
    Kiso M, Mitamura K, Kawaoka Y et al (2004) Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet 364(9436):759–765PubMedCrossRefGoogle Scholar
  27. 27.
    Sato M, Hosoya M, Kato K, Suzuki H (2005) Viral shedding in children with influenza virus infections treated with neuraminidase inhibitors. Pediatr Infect Dis J 24:931–932PubMedCrossRefGoogle Scholar
  28. 28.
    Baz M, Abed Y, McDonald J, Boivin G (2006) Characterization of multidrug-resistant influenza A/H3N2 viruses shed during 1 year by an immunocompromised child. Clin Infect Dis 43(12):1555–1561PubMedCrossRefGoogle Scholar
  29. 29.
    Gooskens J, Jonges M, Claas EC, Meijer A, Kroes AC (2009) Prolonged influenza virus infection during lymphocytopenia and frequent detection of drug-resistant viruses. J Infect Dis 199(10):1435–1441PubMedCrossRefGoogle Scholar
  30. 30.
    Graitcer SB, Gubareva L, Fry AM et al (2011) Characteristics of patients with oseltamivir-resistant pandemic (H1N1) 2009, United States. Emerg Infect Dis 17(2):255–257PubMedCrossRefGoogle Scholar
  31. 31.
    Mehta T, McGrath E, Alangaden GJ et al (2010) Detection of oseltamivir resistance during treatment of 2009 H1N1influenza virus infection in immunocompromised patients: utility of cycle threshold values of qualitative real-time reverse transcriptase PCR. J Clin Microbiol 48(11):4326–4328PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Yamaoka Y, Kawakita T, Nomoto K (2001) Protective effect of a traditional Japanese medicine Hochu-ekki-to (Chinese name: Bu-zhong-yi-qi-tang) on the susceptibility against Listeria monocytogenes in infant mice. Int Immunopharmacol 1:1669–1677PubMedCrossRefGoogle Scholar
  33. 33.
    Kataoka T, Akagawa KS, Tokunaga T, Nagao S (1989) Activation of macrophages with Hochu-ekiito. Jpn J Cancer Chemother 16:1490–1493Google Scholar
  34. 34.
    Utsuyama M, Seidler H, Kitagawa M, Hirokawa K (2001) Immunological restoration and anti-tumor effect by Japanese herbal medicine in aged mice. Mech Ageing Dev 122:341–352PubMedCrossRefGoogle Scholar
  35. 35.
    Kiyohara H, Nagai T, Yamada H et al (2006) Stimulating effect of Japanese herbal (kampo) medicine, hochuekkito on upper respiratory mucosal immune system. Evid Based Complement Alternat Med 3(4):459–467PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kiyohara H, Nonaka K, Yamada H et al (2011) Polysaccharide-containing macromolecules in a kampo (traditional Japanese herbal) medicine, hochuekkito: dual active ingredients for modulation of immune functions on intestinal peyer’s patches and epithelial cells. Evid Based Complement Alternat Med 2011:492691PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Mori K, Kido T, Komatsu Y et al (1999) Effect of Hochu-ekki-to (TJ-41), a Japanese herbal medicine, on the survival of mice infected with influenza virus. Antiviral Res 44(2):103–111PubMedCrossRefGoogle Scholar
  38. 38.
    Abe S, Tansho S, Yamaguchi H et al (1999) Protection of immunosuppressed mice from lethal Candida infection by oral administration of a Kampo medicine, hochu-ekki-to. Immunopharmacol Immunotoxicol 21:331–342PubMedCrossRefGoogle Scholar
  39. 39.
    Hossain MS, Takimoto H, Nomoto K et al (1999) Protective effects of hochu-ekki-to, a Chinese traditional herbal medicine against murine cytomegalovirus infection. Immunopharmacology 41(3):169–181PubMedCrossRefGoogle Scholar
  40. 40.
    Kido T, Mori K, Sasaki H et al (2000) The protective effect of hochu-ekki-to (TJ-41), a Japanese herbal medicine, against HSV-1 infection in mitomycin C-treated mice. Anticancer Res 20(6A):4109–4113PubMedGoogle Scholar
  41. 41.
    Yamaya M, Sasaki T, Nakayama K et al (2007) Hochu-ekki-to inhibits rhinovirus infection in human tracheal epithelial cells. Br J Pharmacol 150(6):702–710PubMedCrossRefGoogle Scholar
  42. 42.
    Hosokawa T, Hosono M, Takeda T et al (1987) Immune responses in newly developed short-lived SAM mice. I. Age-associated early decline in immune activities of cultured spleen cells. Immunology 62:419–423PubMedGoogle Scholar
  43. 43.
    Hosokawa T, Hosono M, Takeda T et al (1987) Immune responses in newly developed short-lived SAM mice. II. Selectively impaired T-helper cell activity in in vitro antibody response. Immunology 62:425–429PubMedGoogle Scholar
  44. 44.
    Hanada K, Hosono M, Takeda T et al (1989) Immune responses in newly developed short-lived SAM mice. III. Genetic control of defective helper T-cell activity in in vitro primary antibody response. Immunology 68:540–546PubMedGoogle Scholar
  45. 45.
    Guo Z, Toichi E, Mori M et al (2000) Genetic analysis of lifespan in hybrid progeny derived from the SAMP1 mouse strain with accelerated senescence. Mech Ageing Dev 118:35–44PubMedCrossRefGoogle Scholar
  46. 46.
    Bouvier NM, Lowen AC (2010) Animal models for influenza virus pathogenesis and transmission. Viruses 2(8):1530–1563PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Treanor JJ, Hayden FG, Mills RG et al (2000) Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza: a randomized controlled trial. JAMA 283(8):1016–1024PubMedCrossRefGoogle Scholar
  48. 48.
    Ward P, Small I, Smith J, Suter P, Dutkowski R (2005) Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. J Antimicrob Chemother 55(Suppl 1):i5–i21PubMedCrossRefGoogle Scholar
  49. 49.
    Kuroiwa A, Liou S, Nagayama A et al (2004) Effect of a traditional Japanese herbal medicine, hochu-ekki-to (Bu-Zhong-Yi-Qi Tang), on immunity in elderly persons. Int Immunopharmacol 4(2):317–324PubMedCrossRefGoogle Scholar
  50. 50.
    Julkunen I, Melén K, Matikainen S et al (2000) Inflammatory responses in influenza A virus infection. Vaccine 19(Suppl 1):S32–S37PubMedCrossRefGoogle Scholar
  51. 51.
    Sládková T, Kostolanský F (2006) The role of cytokines in the immune response to influenza A virus infection. Acta Virol 50(3):151–162PubMedGoogle Scholar
  52. 52.
    Cavaillon JM (1994) Cytokines and macrophages. Biomed Pharmacother 48(10):445–453PubMedCrossRefGoogle Scholar
  53. 53.
    Ellermann-Eriksen S (2005) Macrophages and cytokines in the early defence against herpes simplex virus. Virol J 2:59PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Wang J, Nikrad MP, Mason RJ et al (2012) Innate immune response of human alveolar macrophages during influenza A infection. PLoS One 7(3):e29879PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Short KR, Brooks AG, Reading PC, Londrigan SL (2012) The fate of influenza A virus after infection of human macrophages and dendritic cells. J Gen Virol 93(Pt 11):2315–2325PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Eriko Ohgitani
    • 1
  • Masakazu Kita
    • 1
  • Osam Mazda
    • 1
  • Jiro Imanishi
    • 2
  1. 1.Department of Immunology, Graduate School of MedicineKyoto Prefectural University of MedicineKyotoJapan
  2. 2.Meiji University of Integrative MedicineKyotoJapan

Personalised recommendations