Archives of Virology

, Volume 159, Issue 1, pp 167–173 | Cite as

Genome sequence of the Nocardia bacteriophage NBR1

  • Steve Petrovski
  • Robert J. Seviour
  • Daniel Tillett
Annotated Sequence Record


We here characterize a novel bacteriophage (NBR1) that is lytic for Nocardia otitidiscaviarum and N. brasiliensis. NBR1 is a member of the family Siphoviridae and appears to have a structurally more complex tail than previously reported Siphoviridae phages. NBR1 has a linear genome of 46,140 bp and a sequence that appears novel when compared to those of other phage sequences in GenBank. Annotation of the genome reveals 68 putative open reading frames. The phage genome organization appears to be similar to other Siphoviridae phage genomes in that it has a modular arrangement.


Phage Genome Endolysin Nocardia Species Tape Measure Protein Large Terminase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by an Australian Research Council Linkage Grant (LP0774913) together with Melbourne Water and South East Water, who are thanked for their financial support. S. Petrovski was funded by ARC Linkage and La Trobe University grants.


  1. 1.
    Adams MH (1959) Bacteriophages. Intersciences publishers, Inc., New YorkGoogle Scholar
  2. 2.
    Ackermann HW (2003) Bacteriophage observations and evolution. Res Microbiol 154:245–251PubMedCrossRefGoogle Scholar
  3. 3.
    Ackermann HW (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243PubMedCrossRefGoogle Scholar
  4. 4.
    Adindla S, Inampudi KK, Guruprasd K, Guruprasad L (2004) Identification and analysis of novel tandem repeats in the cell surface proteins of archaeal and bacterial genomes using computational tools. Comp Funct Genomics 5:2–16PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bergh Ø, Børsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468PubMedCrossRefGoogle Scholar
  6. 6.
    Bradley DE (1967) Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev 31:230–314PubMedCentralPubMedGoogle Scholar
  7. 7.
    Brüssow H, Desiere F (2001) Comparative phage genomics and the evolution of Siphovirdae: insights from dairy phages. Mol Microbiol 39:213–222PubMedCrossRefGoogle Scholar
  8. 8.
    Casjen SR (2005) Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol 8:451–458CrossRefGoogle Scholar
  9. 9.
    Catalano CE (2000) The terminase enzyme from bacteriophage lambda: a DNA-packaging machine. Cell Mol Life Sci 57:128–148PubMedCrossRefGoogle Scholar
  10. 10.
    Cheng X, Zhang X, Pflugrath JW, Studier FW (1994) The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proc Natl Acad Sci USA 91:4034PubMedCrossRefGoogle Scholar
  11. 11.
    de los Reyes FL (2010) Foaming. In: Seviour RJ, Nielsen PH (eds) Microbial ecology of activated sludge. IWA publishing, London, pp 215–259Google Scholar
  12. 12.
    Fujisawa H, Morita M (1997) Phage DNA packaging. Genes Cells 2:537–545PubMedCrossRefGoogle Scholar
  13. 13.
    Hatfull GF, Cresawn SG, Hendrix RW (2008) Comparative genomics of the mycobacteriophages: insights into bacteriophage evolution. Res Microbiol 159:332–339PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germane KL, Edgar RH, Hoyle NN, Bowman CA, Tantoco AT, Paladin EC, Myers MS, Smith AL, Grace MS, Pham TT, O’Brien MB, Vogelsberger AM, Hryckowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peebles CL, Cresawn SG, Hendrix RW (2010) Comparative genomics analysis of 60 Mycobacteriophage geneomes: Genome clustering, gene acquisition and gene size. J Mol Biol 397:119–143PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hendrix RW (2003) Bacteriophage genomics. Curr Opin Microbiol 6:506–511PubMedCrossRefGoogle Scholar
  16. 16.
    Inouye M, Arnheim N, Sternglanz R (1973) Bacteriophage T7 lysozyme is a N-acetylmuramyl-L-alanine amidase. J Biol Chem 248:7247–7252PubMedGoogle Scholar
  17. 17.
    Lipps G, Weinzieri AO, von Scheven G, Buchen C, Cramer P (2004) Structure of a bifunctional DNA primase-polymerase. Nat Struct Mol Biol 11:157–162PubMedCrossRefGoogle Scholar
  18. 18.
    Lohman TM, Bjornson KP (1996) Mechanisms of helicase-catalyzed DNA unwinding. Annu Rev Biochem 65:169–214PubMedCrossRefGoogle Scholar
  19. 19.
    Lu Z, Altermann E, Breidt F, Kozyavkin S (2010) Sequence analysis of Leuconostoc mesenteroides bacteriophage 1-A4 isolated from an industrial vegetable fermentation. Appl Environ Microbiol 76:1955–1966PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Petrovski S, Dyson ZA, Quill ES, McIlroy SJ, Tillett D, Seviour RJ (2011) An examination of the mechanisms for stable foam formation in activated sludge systems. Water Res 45:2146–2154PubMedCrossRefGoogle Scholar
  21. 21.
    Petrovski S, Seviour RJ, Tillett D (2011) Genome characterization of the polyvalent lytic bacteriophage GTE2 with the potential for biocontrol of Gordonia, Rhodococcus and Nocardia stabilized foams in activated sludge plants. Appl Environ Microbiol 77:3923–3929PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Petrovski S, Seviour RJ, Tillett D (2011) Genome sequence and characterization of the Tsukamurella phage TPA2. Appl Environ Microbiol 77:1389–1398PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Petrovski S, Tillett D, Seviour RJ (2012) Genome sequences and characterization of the Gordonia phages GTE5 and GRU1 and their use as potential biocontrol agents. Appl Environ Microbiol 78:42–47PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Rao VB, Feiss M (2008) The bacteriophage DANN packaging motor. Annu Rev Genet 42:647–681PubMedCrossRefGoogle Scholar
  25. 25.
    Rohwer F (2003) Global phage diversity. Cell 113:141PubMedCrossRefGoogle Scholar
  26. 26.
    Sharma M, Ellis RL, Hinton DM (1992) Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phages. Proc Natl Acad Sci USA 89:6658–6662PubMedCrossRefGoogle Scholar
  27. 27.
    Sharples GJ, Ingleston SM, Lloyd RG (1999) Holliday junction processing in bacteria: Insights from the evolutionary conservation of RuvABC, RecG, and RusA. J Bacteriol 181:5543–5550PubMedCentralPubMedGoogle Scholar
  28. 28.
    Summers EJ, Liu M, Gill JJ, Grant M, Chan-Cortes TN, Ferguson L, Janes C, Lange K, Bertoli M, Moore C, Orchard RC, Cohen ND, Young R (2011) Genomic and functional analysis of Rhodococcus equi phages ReqiPepy6, ReqiPoco6, ReqiPine5 and ReqiDocB7. Appl Environ Microbiol 77:669–683CrossRefGoogle Scholar
  29. 29.
    Thomas JA, Soddell JA, Kurtboke DI (2002) Fighting foam with phages. Water Sci Technol 46:511–518PubMedGoogle Scholar
  30. 30.
    Wang I, Smith DL, Young R (2000) Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825PubMedCrossRefGoogle Scholar
  31. 31.
    White MF, Giraud-Panis MJE, Pohler JRG, Lilley DMJ (1997) Recognition and manipulation of branched DNA structure by junction-resolving enzymes. J Mol Biol 269:647–664PubMedCrossRefGoogle Scholar
  32. 32.
    Withey SE, Cartmell E, Avery LM, Stephenson T (2005) Bacteriophages potential for application in wastewater treatment processes. Sci Total Environ 339:1–18PubMedCrossRefGoogle Scholar
  33. 33.
    Xu J, Hendrix RW, Duda RL (2004) Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 16:11–21PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Steve Petrovski
    • 1
    • 2
  • Robert J. Seviour
    • 1
    • 3
  • Daniel Tillett
    • 1
  1. 1.La Trobe Institute for Molecular SciencesLa Trobe UniversityBendigoAustralia
  2. 2.Molecular Pathology, Peter MacCallum Cancer CentreEast MelbourneAustralia
  3. 3.Department of MicrobiologyLa Trobe UniversityMelbourneAustralia

Personalised recommendations