Archives of Virology

, Volume 158, Issue 12, pp 2531–2541 | Cite as

Isolation and characterization of two H5N1 influenza viruses from swine in Jiangsu Province of China

  • Liang He
  • Guo Zhao
  • Lei Zhong
  • Qingtao Liu
  • Zhiqiang Duan
  • Min Gu
  • Xiaoquan Wang
  • Xiaowen Liu
  • Xiufan Liu
Original Article

Abstract

Pigs are susceptible to infection with both human and avian influenza A viruses and are considered intermediate hosts that facilitate virus reassortment. Although H5N1 virus has spread to a wide range of avian and mammalian species, data about swine H5N1 isolates are scarce. To determine whether Asian H5N1 influenza viruses had been transmitted to pigs, a total of 1,107 nasal swab samples from healthy swine were collected from 2008 to 2009 in Jiangsu province of eastern China. In this survey, two H5N1 viruses A/swine/Jiangsu/1/2008 (JS/08) and A/swine/Jiangsu/2/2009 (JS/09) were isolated and identified. Phylogenetic analysis showed that JS/08 and JS/09 belonged to clade 7 and clade 2.3.4, respectively, and shared over 99.0 % sequence identity with poultry H5N1 isolates of the same clade in China. Receptor specificity analysis also showed that both of the swine H5N1 isolates bound preferentially to avian-type receptors. However, experiments in mammals indicated that JS/09 was moderately pathogenic to mice without prior adaption, whereas JS/08 had limited ability to replicate. Our findings suggest that pigs are naturally infected with avian H5N1 virus and highlight the potential threat to public health due to adaption or reassortment of H5N1 virus in this species.

Notes

Acknowledgments

This study was supported by the Major State Basic Research Development Program (973 Program) (No. 2011CB505003), the Important National Science & Technology Specific Projects (Nos. 2008ZX10004-013 and 2009ZX10004-214), and the Research and Innovation Project of College Students in Jiangsu Province (No.CXZZ12_0914).

References

  1. 1.
    Auewarakul P, Suptawiwat O, Kongchanagul A, Sangma C, Suzuki Y, Ungchusak K, Louisirirotchanakul S, Lerdsamran H, Pooruk P, Thitithanyanont A, Pittayawonganon C, Guo CT, Hiramatsu H, Jampangern W, Chunsutthiwat S, Puthavathana P (2007) An avian influenza H5N1 virus that binds to a human-type receptor. J Virol 81:9950–9955PubMedCrossRefGoogle Scholar
  2. 2.
    Bi YH, Fu GH, Chen J, Peng JS, Sun YP, Wang JJ, Pu JA, Zhang Y, Gao HJ, Ma GP, Tian FL, Brown IH, Liu JH (2010) Novel swine influenza virus reassortants in pigs, China. Emerg Inf Dis 16:1162–1164CrossRefGoogle Scholar
  3. 3.
    Castrucci MR, Donatelli I, Sidoli L, Barigazzi G, Kawaoka Y, Webster RG (1993) Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 193:503–506PubMedCrossRefGoogle Scholar
  4. 4.
    Chen LM, Davis CT, Zhou H, Cox NJ, Donis RO (2008) Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses. PloS Path 4:e1000072CrossRefGoogle Scholar
  5. 5.
    Choi YK, Nguyen TD, Ozaki H, Webby RJ, Puthavathana P, Buranathal C, Chaisingh A, Auewarakul P, Hanh NTH, Ma SK, Hui PY, Guan Y, Peiris JSM, Webster RG (2005) Studies of H5N1 influenza virus infection of pigs by using viruses isolated in Vietnam and Thailand in 2004. J Virol 79:10821–10825PubMedCrossRefGoogle Scholar
  6. 6.
    Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351:472–477PubMedCrossRefGoogle Scholar
  7. 7.
    Cong YL, Wang GM, Guan ZH, Chang SA, Zhang QP, Yang GL, Wang WL, Meng QF, Ren WM, Wang CF, Ding ZA (2010) Reassortant between human-like H3N2 and avian H5 subtype influenza A viruses in pigs: a potential public health risk. PloS One 5:e12591PubMedCrossRefGoogle Scholar
  8. 8.
    Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, Lopez-Gatell H, Olivera H, Lopez I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD Jr, Boxrud D, Sambol AR, Abid SH, St George K, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, Clark PA, Beatrice ST, Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov AI, Cox NJ (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201PubMedCrossRefGoogle Scholar
  9. 9.
    Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842PubMedCrossRefGoogle Scholar
  10. 10.
    Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289PubMedCrossRefGoogle Scholar
  11. 11.
    Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong GX, Hanson A, Katsura H, Watanabe S, Li CJ, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428PubMedGoogle Scholar
  12. 12.
    Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373PubMedGoogle Scholar
  13. 13.
    Jiang WM, Liu S, Chen J, Hou GY, Li JP, Cao YF, Zhuang QY, Li Y, Huang BX, Chen JM (2010) Molecular epidemiological surveys of H5 subtype highly pathogenic avian influenza viruses in poultry in China during 2007–2009. J Gen Virol 91:2491–2496PubMedCrossRefGoogle Scholar
  14. 14.
    Kida H, Ito T, Yasuda J, Shimizu Y, Itakura C, Shortridge KF, Kawaoka Y, Webster RG (1994) Potential for transmission of avian influenza viruses to pigs. J Gen Virol 75:2183–2188PubMedCrossRefGoogle Scholar
  15. 15.
    Lee MS, Chang PC, Shien JH, Cheng MC, Shieh HK (2001) Identification and subtyping of avian influenza viruses by reverse transcription-PCR. J Virol Methods 97:13–22PubMedCrossRefGoogle Scholar
  16. 16.
    Li CJ, Hatta M, Nidom CA, Muramoto Y, Watanabe S, Neumann G, Kawaoka Y (2010) Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. P Natl Acad Sci USA 107:4687–4692CrossRefGoogle Scholar
  17. 17.
    Li Y, Zhang X, Xu Q, Fu Q, Zhu Y, Chen S, Peng D, Liu X (2013) Characterisation and haemagglutinin gene epitope mapping of a variant strain of H5N1 subtype avian influenza virus. Vet Microbiol 162:614–622PubMedCrossRefGoogle Scholar
  18. 18.
    Li YB, Shi JZ, Zhong GX, Deng GH, Tian GB, Ge JY, Zeng XY, Song JS, Zhao DM, Liu LL, Jiang YP, Guan YT, Bu ZG, Chen HL (2010) Continued evolution of H5N1 influenza viruses in wild birds, domestic poultry, and humans in China from 2004 to 2009. J Virol 84:8389–8397PubMedCrossRefGoogle Scholar
  19. 19.
    Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79:12058–12064PubMedCrossRefGoogle Scholar
  20. 20.
    Lipatov AS, Kwon YK, Sarmento LV, Lager KM, Spackman E, Suarez DL, Swayne DE (2008) Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses. PloS Path 4:e1000102CrossRefGoogle Scholar
  21. 21.
    Liu QF, Ma JJ, Kou Z, Pu J, Lei FM, Li TX, Liu JH (2010) Characterization of a highly pathogenic avian influenza H5N1 clade 2.3.4 virus isolated from a tree sparrow. Virus Res 147:25–29PubMedCrossRefGoogle Scholar
  22. 22.
    Liu W, Wei MT, Tong YG, Tang F, Zhang L, Fang LQ, Yang H, Cao WC (2011) Seroprevalence and genetic characteristics of five subtypes of influenza A viruses in the Chinese pig population: a pooled data analysis. Vet J 187:200–206PubMedCrossRefGoogle Scholar
  23. 23.
    Maines TR, Chen LM, Matsuoka Y, Chen HL, Rowe T, Ortin J, Falcon A, Hien NT, Mai LQ, Sedyaningsih ER, Harun S, Tumpey TM, Donis RO, Cox NJ, Subbarao K, Katz JM (2006) Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. P Natl Acad Sci USA 103:12121–12126CrossRefGoogle Scholar
  24. 24.
    Negovetich NJ, Webster RG (2010) Thermostability of subpopulations of H2N3 influenza virus isolates from mallard ducks. J Virol 84:9369–9376PubMedCrossRefGoogle Scholar
  25. 25.
    Nidom CA, Takano R, Yamada S, Sakai-Tagawa Y, Daulay S, Aswadi D, Suzuki T, Suzuki Y, Shinya K, Iwatsuki-Horimoto K, Muramoto Y, Kawaoka Y (2010) Influenza A (H5N1) viruses from pigs, Indonesia. Emerg Inf Dis 16:1515–1523CrossRefGoogle Scholar
  26. 26.
    Octaviani CP, Ozawa M, Yamada S, Goto H, Kawaoka Y (2010) High level of genetic compatibility between swine-origin H1N1 and highly pathogenic avian H5N1 influenza viruses. J Virol 84:10918–10922PubMedCrossRefGoogle Scholar
  27. 27.
    Peiris JSM, de Jong MD, Guan Y (2007) Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 20:243–267PubMedCrossRefGoogle Scholar
  28. 28.
    Qiu BF, Liu WJ, Peng DX, Hu SL, Tang YH, Liu XF (2009) A reverse transcription-PCR for subtyping of the neuraminidase of avian influenza viruses. J Virol Methods 155:193–198PubMedCrossRefGoogle Scholar
  29. 29.
    Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Epidemiol 27:493–497Google Scholar
  30. 30.
    Shi WF, Gibbs MJ, Zhang YZ, Zhang Z, Zhao XM, Jin X, Zhu CD, Yang MF, Yang NN, Cui YJ, Ji L (2008) Genetic analysis of four porcine avian influenza viruses isolated from Shandong, China. Arch Virol 153:211–217PubMedCrossRefGoogle Scholar
  31. 31.
    Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1125PubMedCrossRefGoogle Scholar
  32. 32.
    Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, Cox N (1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279:393–396PubMedCrossRefGoogle Scholar
  33. 33.
    Suptawiwat O, Kongchanagul A, Chan-It W, Thitithanyanont A, Wiriyarat W, Chaichuen K, Songserm T, Suzuki Y, Puthavathana P, Auewarakul P (2008) A simple screening assay for receptor switching of avian influenza viruses. J Clin Virol 42:186–189PubMedCrossRefGoogle Scholar
  34. 34.
    Vijaykrishna D, Smith GJ, Pybus OG, Zhu H, Bhatt S, Poon LL, Riley S, Bahl J, Ma SK, Cheung CL, Perera RA, Chen H, Shortridge KF, Webby RJ, Webster RG, Guan Y, Peiris JS (2011) Long-term evolution and transmission dynamics of swine influenza A virus. Nature 473:519–522PubMedCrossRefGoogle Scholar
  35. 35.
    Wan XF, Dong LB, Lan Y, Long LP, Xu CL, Zou SM, Li Z, Wen LY, Cai ZP, Wang W, Li XD, Yuan F, Sui HT, Zhang Y, Dong J, Sun SH, Gao Y, Wang M, Bai T, Yang L, Li DX, Yang WZ, Yu HJ, Wang SW, Feng ZJ, Wang Y, Guo YJ, Webby RJ, Shu YL (2011) Indications that live poultry markets are a major source of human H5N1 influenza virus infection in China. J Virol 85:13432–13438PubMedCrossRefGoogle Scholar
  36. 36.
    Xu XY, Subbarao K, Cox NJ, Guo YJ (1999) Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261:15–19PubMedCrossRefGoogle Scholar
  37. 37.
    Yamamoto Y, Nakamura K, Yamada M, Mase M (2012) Limited susceptibility of pigeons experimentally inoculated with H5N1 highly pathogenic avian influenza viruses. J Vet Med Sci 74:205–208PubMedCrossRefGoogle Scholar
  38. 38.
    Yee KS, Carpenter TE, Cardona CJ (2009) Epidemiology of H5N1 avian influenza. Comp Immunol Microb 32:325–340CrossRefGoogle Scholar
  39. 39.
    Yen HL, Lipatov AS, Ilyushina NA, Govorkova EA, Franks J, Yilmaz N, Douglas A, Hay A, Krauss S, Rehg JE, Hoffmann E, Webster RG (2007) Inefficient transmission of H5N1 influenza viruses in a ferret contact model. J Virol 81:6890–6898PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang Y, Sun YP, Sun HL, Pu J, Bi YH, Shi Y, Lu XS, Li J, Zhu QY, Gao GF, Yang HC, Liu JH (2012) A single amino acid at the hemagglutinin cleavage site contributes to the pathogenicity and neurovirulence of H5N1 influenza virus in mice. J Virol 86:6924–6931PubMedCrossRefGoogle Scholar
  41. 41.
    Zhao G, Fan QP, Zhong L, Li YF, Liu WB, Liu XW, Gao S, Peng DX, Liu XF (2012) Isolation and phylogenetic analysis of pandemic H1N1/09 influenza virus from swine in Jiangsu province of China. Res Vet Sci 93:125–132PubMedCrossRefGoogle Scholar
  42. 42.
    Zhu Q, Yang H, Chen W, Cao W, Zhong G, Jiao P, Deng G, Yu K, Yang C, Bu Z, Kawaoka Y, Chen H (2008) A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. J Virol 82:220–228PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Liang He
    • 1
  • Guo Zhao
    • 1
  • Lei Zhong
    • 1
  • Qingtao Liu
    • 1
  • Zhiqiang Duan
    • 1
  • Min Gu
    • 1
  • Xiaoquan Wang
    • 1
  • Xiaowen Liu
    • 1
  • Xiufan Liu
    • 1
  1. 1.College of Veterinary MedicineYangzhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations