Advertisement

Archives of Virology

, Volume 158, Issue 11, pp 2341–2350 | Cite as

Isolation and characterization of phages with lytic activity against methicillin-resistant Staphylococcus aureus strains belonging to clonal complex 398

  • Britta Kraushaar
  • Mai Dinh Thanh
  • Jens A. Hammerl
  • Jochen Reetz
  • Alexandra Fetsch
  • Stefan HertwigEmail author
Original Article

Abstract

Some years ago, MRSA clonal complex (CC) 398 emerged, which spread extensively in livestock animals. People in contact with food production animals are at high risk of colonization. A reduction of MRSA CC398 in livestock might be achieved by application of virulent phages. However, there have not yet been any reports published on phages lysing MRSA CC398 strains. In this study, three virulent phages (PSa1, PSa2 and PSa3) with lytic activity against MRSA CC398 strains were isolated from German pig farms. Morphologically, the phages are members of the family Podoviridae, and they exhibited an identical host range. They lysed 52 (60 %) out of 86 tested MRSA CC398 strains representing 18 different spa types. While the PSa1 and PSa3 genomes have a similar size of approximately 17.5 kb, the PSa2 genome is somewhat larger (ca. 18.5 kb). Southern hybridization revealed strong DNA homologies between the phages, which was confirmed by sequence analysis of cloned restriction fragments and PCR products. Moreover, the whole PSa3 genomic sequence (17,602 bp) showed a close relationship to 44AHJD-like phages, which are not known to contain virulence-associated genes. To assess whether these phages might be candidates for applications, in vitro experiments were carried out in which the number of MRSA CC398 cells could be reduced by up to four log10 units. The phages were stable at a wide range of temperatures and pH values.

Keywords

Lytic Activity Burst Size Clonal Complex Phage Propagation CC398 Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

705_2013_1707_MOESM1_ESM.doc (58 kb)
Supplementary material 1 (DOC 58 kb)
705_2013_1707_MOESM2_ESM.xls (64 kb)
Supplementary material 2 (XLS 64 kb)
705_2013_1707_MOESM3_ESM.doc (34 kb)
Supplementary material 3 (DOC 34 kb)
705_2013_1707_MOESM4_ESM.doc (34 kb)
Supplementary material 4 (DOC 34 kb)

References

  1. 1.
    Alfadhel M, Puapermpoonsiri U, Ford SJ, McInnes FJ, van der Walle CF (2011) Lyophilized inserts for nasal administration harboring bacteriophage selective for Staphylococcus aureus: in vitro evaluation. Int J Pharm 416:280–287CrossRefPubMedGoogle Scholar
  2. 2.
    Alt K, Fetsch A, Schroeter A, Guerra B, Hammerl JA, Hertwig S, Senkow N, Geinets A, Mueller-Graf C, Braeunig J, Kaesbohrer A, Appel B, Hensel A, Tenhagen BA (2011) Factors associated with the occurrence of MRSA CC398 in herds of fattening pigs in Germany. BMC Vet Res 7:69CrossRefPubMedGoogle Scholar
  3. 3.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  4. 4.
    Argudín MA, Tenhagen BA, Fetsch A, Sachsenröder J, Käsbohrer A, Schroeter A, Hammerl JA, Hertwig S, Helmuth R, Bräunig J, Mendoza MC, Appel B, Rodicio MR, Guerra B (2011) Virulence and resistance determinants of German Staphylococcus aureus isolates from nonhuman sources. Appl Environ Microbiol 77:3052–3060CrossRefPubMedGoogle Scholar
  5. 5.
    Bhat M, Dumortier C, Taylor BS, Miller M, Vasquez G, Yunen J, Brudney K, Sánchez-E J, Rodriguez-Taveras C, Rojas R, Leon P, Lowy FD (2009) Staphylococcus aureus ST398, New York City and Dominican Republic. Emerg Infect Dis 15:285–287CrossRefPubMedGoogle Scholar
  6. 6.
    Borysowski J, Lobocka M, Miedzybrodski R, Weber-Dabrowska B, Górski A (2011) Potential of bacteriophages and their lysins in the treatment of MRSA: current status and future perspectives. BioDrugs 25:347–355CrossRefPubMedGoogle Scholar
  7. 7.
    Broens EM, Graat EA, van de Giessen AW, Broekhuizen-Stins MJ, de Jong MC (2012) Quantification of transmission of livestock-associated methicillin resistant Staphylococcus aureus in pigs. Vet Microbiol 155:381–388CrossRefPubMedGoogle Scholar
  8. 8.
    Brown CM, Dalphin ME, Stockwell PA, Tate WP (1993) The translational termination signal database. Nucleic Acids Res 21:3119–3123CrossRefPubMedGoogle Scholar
  9. 9.
    Burrowes B, Harper DR, Anderson J, McConville M, Enright MC (2011) Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev Anti Infect Ther 9:775–785CrossRefPubMedGoogle Scholar
  10. 10.
    Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother 51:2765–2773CrossRefPubMedGoogle Scholar
  11. 11.
    Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45CrossRefPubMedGoogle Scholar
  12. 12.
    Cui Z, Song Z, Wang Y, Zeng L, Shen W, Wang Z, Li Q, He P, Qin J, Guo X (2012) Complete genome sequence of wide-host-range Staphylococcus aureus phage JD007. J Virol 86:13880–13881CrossRefPubMedGoogle Scholar
  13. 13.
    Deghorain M, van Melderen L (2012) The Staphylococci phages family: an overview. Viruses 4:3316–3335CrossRefPubMedGoogle Scholar
  14. 14.
    De Neeling AJ, van den Broek MJ, Spalburg EC, van Santen-Verheuvel MG, Dam-Deisz WD, Boshuizen HC, van de Giessen AW, van Duijkeren E, Huijsdens XW (2007) High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet Microbiol 122:366–372CrossRefPubMedGoogle Scholar
  15. 15.
    Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL (2000) Prediction of transcription terminators in bacterial genomes. J Mol Biol 301:27–33CrossRefPubMedGoogle Scholar
  16. 16.
    European Food Safety Authority (2009) Analysis of the baseline survey on the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in holdings with breeding pigs, in the EU, 2008, Part A: MRSA prevalence estimates. EFSA J 7:1376Google Scholar
  17. 17.
    Graveland H, Wagenaar JA, Heesterbeek H, Mevius D, van Duijkeren E, Heederik D (2010) Methicillin resistant Staphylococcus aureus ST398 in veal calf farming: human MRSA carriage related with animal antimicrobial usage and farm hygiene. PLoS One 5:e10990CrossRefPubMedGoogle Scholar
  18. 18.
    Graveland H, Duim B, van Duijkeren E, Heederik D, Wagenaar JA (2011) Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int J Med Microbiol 301:630–634CrossRefPubMedGoogle Scholar
  19. 19.
    Kelly D, McAuliffe O, Ross RP, Coffey A (2012) Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivates. Lett Appl Microbiol 54:286–291CrossRefPubMedGoogle Scholar
  20. 20.
    Khanna T, Friendship R, Dewey C, Weese JS (2008) Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. Vet Microbiol 128:298–303CrossRefPubMedGoogle Scholar
  21. 21.
    Köck R, Schaumburg F, Mellmann A, Köksal M, Jurke A, Becker K, Friedrich A (2013) Livestock-associated methicillin-resistant Staphylococcus aureus as cause of human infection and colonization in Germany. PLoS One 8:e55040CrossRefPubMedGoogle Scholar
  22. 22.
    Kvachadze L, Balarjishvili N, Meskhi T, Tevdoradze E, Skhirtladze N, Pataridze T, Adamia R, Topuria T, Kutter E, Rohde C, Kutateladze M (2011) Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol 4:643–650CrossRefPubMedGoogle Scholar
  23. 23.
    Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 102:5174–5179CrossRefPubMedGoogle Scholar
  24. 24.
    Mann NH (2008) The potential of phages to prevent MRSA infections. Res Microbiol 159:400–405CrossRefPubMedGoogle Scholar
  25. 25.
    Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin Z, Fujimoto S, Nasimuzzaman MD, Wakiguchi H, Sugihara S, Sugiura T, Koda S, Muraoka A, Imai S (2003) Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage phi MR11. J Infect Dis 187:613–624CrossRefPubMedGoogle Scholar
  26. 26.
    Meijer WJ, Horcajadas JA, Salas M (2001) Phi29 family of phages. Microbiol Mol Biol Rev 65:261–287CrossRefPubMedGoogle Scholar
  27. 27.
    Molla B, Byrne M, Abley M, Mathews J, Jackson CR, Fedorka-Cray P, Sreevatsan S, Wang P, Gebreyes WA (2012) Epidemiology and genotypic characteristics of methicillin-resistant Staphylococcus aureus strains of porcine origin. J Clin Microbiol 50:3687–3693CrossRefPubMedGoogle Scholar
  28. 28.
    Nemati M, Hermans K, Lipinska U, Denis O, Deplano A, Struelens M, Devriese LA, Plasmans F, Haesebrouck F (2008) Antimicrobial resistance of old and recent Staphylococcus aureus isolates from poultry: first description of livestock-associated methicillin-resistant strain ST398. Antimicrob Agents Chemother 52:3817–3819CrossRefPubMedGoogle Scholar
  29. 29.
    O’Flaherty S, Ross RP, Coffey A (2009) Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev 33:801–819CrossRefPubMedGoogle Scholar
  30. 30.
    Otto M (2012) MRSA virulence and spread. Cell Microbiol 14:1513–1521CrossRefPubMedGoogle Scholar
  31. 31.
    Pantosti A (2012) Methicillin-resistant Staphylococcus aureus associated with animals and its relevance to human health. Front Microbiol. doi: 10.3389/fmicb.2012.00127 PubMedGoogle Scholar
  32. 32.
    Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  33. 33.
    Smith TC, Male MJ, Harper AL, Kroeger JS, Tinkler GP, Moritz ED, Capuano AW, Herwaldt LA, Diekema DJ (2008) Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in midwestern U.S. swine and swine workers. PLoS One 4:e4258CrossRefPubMedGoogle Scholar
  34. 34.
    Son JS, Lee SJ, Jun SY, Yoon SJ, Kang SH, Paik HR, Kang JO, Choi YJ (2010) Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol 86:1439–1449CrossRefPubMedGoogle Scholar
  35. 35.
    Springer B, Orendi U, Much P, Höger G, Ruppitsch W, Krziwanek K, Metz-Gercek S, Mittermayer H (2009) Methicillin-resistant Staphylococcus aureus: a new zoonotic agent? Wien Klein Wochenschr 121:86–90CrossRefGoogle Scholar
  36. 36.
    Strauch E, Voigt I, Broll H, Appel B (2000) Use of a plasmid of a Yersinia enterocolitica biogroup 1A strain for the construction of cloning vectors. J Biotechnol 79:63–72CrossRefPubMedGoogle Scholar
  37. 37.
    Takáč M, Bläsi U (2005) Phage P68 virion associated protein 17 displays activity against clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 49:2934–2940CrossRefPubMedGoogle Scholar
  38. 38.
    Van Cleef BA, Monnet DL, Voss A, Krziwanek K, Allerberger F, Struelens M, Zemlickova H, Skov RL, Vuopio-Varkila J, Cuny C, Friedrich AW, Spiliopoulou I, Pászti J, Hardardottir H, Rossney A, Pan A, Pantosti A, Borg M, Grundmann H, Mueller-Premru M, Olsson-Liljequist B, Widmer A, Harbath S, Schweiger A, Unal S, Kluytmans JA (2011) Livestock-associated methicillin-resistant Staphylococcus aureus in humans, Europe. Emerg Infect Dis 17:502–505CrossRefPubMedGoogle Scholar
  39. 39.
    Vandersteegen K, Mattheus W, Ceyssens PJ, Bilocq F, De Vos D, Pirnay JP, Noben JP, Merabishvili M, Lipinska U, Hermans K, Lavigne R (2011) Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS One 6:e24418CrossRefPubMedGoogle Scholar
  40. 40.
    Verkade E, Kluytmans J (2013) Livestock-associated Staphylococcus aureus CC398: animal reservoirs and human infections. Infect Genet Evol. doi: 10.1016/j.meegid.2013.02.013 PubMedGoogle Scholar
  41. 41.
    Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M (2005) Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 11:1965–1966CrossRefPubMedGoogle Scholar
  42. 42.
    Vybiral D, Takác M, Loessner M, Witte A, von Ahsen U, Bläsi U (2003) Complete nucleotide sequence and molecular characterization of two lytic Staphylococcus aureus phages: 44AHJD and P68. FEMS Microbiol Lett 219:275–283CrossRefPubMedGoogle Scholar
  43. 43.
    Witte W, Cuny C, Chaberny IF (2011) GERMAP 2010 Antibiotikaresistenz- und –verbrauch: Staphylococcus spp. http://www.p-e-g.org/econtext/germap
  44. 44.
    Wulf MW, Markestein A, van der Linden FT, Voss A, Klaassen C, Verduin CM (2008) First outbreak of methicillin-resistant Staphylococcus aureus ST398 in a Dutch hospital, June 2007. Euro Surveill 13(9)Google Scholar
  45. 45.
    Xia G, Corrigan RM, Winstel V, Goerke C, Gründling A, Peschel A (2011) Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. J Bacteriol 193:4006–4009CrossRefPubMedGoogle Scholar
  46. 46.
    Yu F, Chen Z, Liu C, Zhang X, Lin X, Chi S, Zhou T, Chen Z, Chen X (2008) Prevalence of Staphylococcus aureus carrying Panton-Valentine leukocidin genes among isolates from hospitalised patients in China. Clin Microbiol Infect 14:381–384CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Britta Kraushaar
    • 1
    • 2
  • Mai Dinh Thanh
    • 1
    • 2
  • Jens A. Hammerl
    • 1
  • Jochen Reetz
    • 1
  • Alexandra Fetsch
    • 1
    • 2
  • Stefan Hertwig
    • 3
    • 1
    Email author
  1. 1.Department for Biological SafetyFederal Institute for Risk AssessmentBerlinGermany
  2. 2.National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureusBerlinGermany
  3. 3.Bundesinstitut für Risikobewertung, Diagnostik und Genetik, ErregercharakterisierungBerlinGermany

Personalised recommendations