Archives of Virology

, Volume 158, Issue 7, pp 1603–1607 | Cite as

Novel ssDNA viruses discovered in yellow-crowned parakeet (Cyanoramphus auriceps) nesting material

  • Alyssa Sikorski
  • Jonathan Kearvell
  • Simon Elkington
  • Anisha Dayaram
  • Gerardo R. Argüello-Astorga
  • Arvind Varsani
Annotated Sequence Record

Abstract

During routine monitoring of yellow-crowned parakeets in the Poulter Valley of the South Island of New Zealand, a dead parakeet chick was discovered in a nest. Known parrot-infecting viruses, such as beak and feather disease virus (BFDV), avian polyomavirus (APV), and parrot hepatitis B virus (PHBV), were not detected in the nesting material. However, we recovered two novel single-stranded DNA viruses (ssDNA), CynNCXV (2308 nt) and CynNCKV (2087 nt), which have genome architectures similar to those of circoviruses, characterised by circular genomes with two large bidirectional open reading frames (ORFs). Both contain a stem-loop element with a conserved nonanucleotide motif, known to be required for rolling-circle replication. The full genomes had no BLASTn similarity to known ssDNA viruses. However, in both genomes the larger ORFs have BLAST similarity to known replication-associated proteins (Reps). CynNCKV has 30 % similarity to picobiliphyte nano-like virus (Picobiliphyte M5584-5) with 66-88 % coverage (e-value of 5×10−33), whereas CynNCXV has 33 % similarity to rodent stool-associated virus (RodSCV M-45) with 92-94 % coverage (e-value of 5 × 10−31). Found within these ORFs were the rolling-circle replication motifs I, II, III and the helicase motifs Walker A and Walker B. Maximum-likelihood phylogenetic analysis of the Reps reveals that these are two novel ssDNA viruses. At this point, we are unable to attribute the death of the parakeet to these two new novel ssDNA viruses.

Notes

Acknowledgements

This work was supported by the Brian Mason Scientific & Technical Trust, New Zealand.

References

  1. 1.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. 2.
    Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552PubMedCrossRefGoogle Scholar
  3. 3.
    Blinkova O, Victoria J, Li Y, Keele BF, Sanz C, Ndjango JB, Peeters M, Travis D, Lonsdorf EV, Wilson ML, Pusey AE, Hahn BH, Delwart EL (2010) Novel circular DNA viruses in stool samples of wild-living chimpanzees. J Gen Virol 91:74–86PubMedCrossRefGoogle Scholar
  4. 4.
    Dayaram A, Opong A, Jaschke A, Hadfield J, Baschiera M, Dobson RC, Offei SK, Shepherd DN, Martin DP, Varsani A (2012) Molecular characterisation of a novel cassava associated circular ssDNA virus. Virus Res 166:130–135PubMedCrossRefGoogle Scholar
  5. 5.
    Delwart E, Li L (2012) Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes. Virus Res 164:114–121PubMedCrossRefGoogle Scholar
  6. 6.
    Ge X, Li J, Peng C, Wu L, Yang X, Wu Y, Zhang Y, Shi Z (2011) Genetic diversity of novel circular ssDNA viruses in bats in China. J Gen Virol 92:2646–2653PubMedCrossRefGoogle Scholar
  7. 7.
    Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321PubMedCrossRefGoogle Scholar
  8. 8.
    Kim HK, Park SJ, Nguyen VG, Song DS, Moon HJ, Kang BK, Park BK (2012) Identification of a novel single-stranded, circular DNA virus from bovine stool. J Gen Virol 93:635–639PubMedCrossRefGoogle Scholar
  9. 9.
    Li L, Kapoor A, Slikas B, Bamidele OS, Wang C, Shaukat S, Masroor MA, Wilson ML, Ndjango J-BN, Peeters M, Gross-Camp ND, Muller MN, Hahn BH, Wolfe ND, Triki H, Bartkus J, Zaidi SZ, Delwart E (2010) Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol 84:1674–1682PubMedCrossRefGoogle Scholar
  10. 10.
    Massaro M, Ortiz-Catedral L, Julian L, Galbraith JA, Kurenbach B, Kearvell J, Kemp J, van Hal J, Elkington S, Taylor G, Greene T, van de Wetering J, van de Wetering M, Pryde M, Dilks P, Heber S, Steeves TE, Walters M, Shaw S, Potter J, Farrant M, Brunton DH, Hauber M, Jackson B, Bell P, Moorhouse R, McInnes K, Varsani A (2012) Molecular characterisation of beak and feather disease virus (BFDV) in New Zealand and its implications for managing an infectious disease. Arch Virol 157:1651–1663PubMedCrossRefGoogle Scholar
  11. 11.
    Ng TF, Marine R, Wang C, Simmonds P, Kapusinszky B, Bodhidatta L, Oderinde BS, Wommack KE, Delwart E (2012) High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J Virol 86:12161–12175Google Scholar
  12. 12.
    Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  13. 13.
    Ortiz-Catedral L, Kurenbach B, Massaro M, McInnes K, Brunton DH, Hauber ME, Martin DP, Varsani A (2010) A new isolate of beak and feather disease virus from endemic wild red-fronted parakeets (Cyanoramphus novaezelandiae) in New Zealand. Arch Virol 155:613–620PubMedCrossRefGoogle Scholar
  14. 14.
    Phan TG, Kapusinszky B, Wang C, Rose RK, Lipton HL, Delwart EL (2011) The fecal viral flora of wild rodents. PLoS Pathog 7:e1002218PubMedCrossRefGoogle Scholar
  15. 15.
    Piasecki T, Kurenbach B, Chrzastek K, Bednarek K, Kraberger S, Martin DP, Varsani A (2012) Molecular characterisation of an avihepadnavirus isolated from Psittacula krameri (ring-necked parrot). Arch Virol 157:585–590PubMedCrossRefGoogle Scholar
  16. 16.
    Rosario K, Nilsson C, Lim YW, Ruan Y, Breitbart M (2009) Metagenomic analysis of viruses in reclaimed water. Environ Microbiol 11:2806–2820PubMedCrossRefGoogle Scholar
  17. 17.
    Rosario K, Marinov M, Stainton D, Kraberger S, Wiltshire EJ, Collings DA, Walters M, Martin DP, Breitbart M, Varsani A (2011) Dragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata: Anisoptera). J Gen Virol 92:1302–1308PubMedCrossRefGoogle Scholar
  18. 18.
    Rosario K, Dayaram A, Marinov M, Ware J, Kraberger S, Stainton D, Breitbart M, Varsani A (2012) Diverse circular single-stranded DNA viruses discovered in dragonflies (Odonata: Epiprocta). J Gen Virol 93:2668–2681Google Scholar
  19. 19.
    Rosario K, Duffy S, Breitbart M (2012) A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol 157:1851–1871PubMedCrossRefGoogle Scholar
  20. 20.
    Roux S, Enault F, Robin A, Ravet V, Personnic S, Theil S, Colombet J, Sime-Ngando T, Debroas D (2012) Assessing the diversity and specificity of two freshwater viral communities through metagenomics. PloS one 7:e33641CrossRefGoogle Scholar
  21. 21.
    Shan T, Li L, Simmonds P, Wang C, Moeser A, Delwart E (2011) The fecal virome of pigs on a high-density farm. J Virol 85:11697–11708CrossRefGoogle Scholar
  22. 22.
    Shepherd DN, Martin DP, Lefeuvre P, Monjane AL, Owor BE, Rybicki EP, Varsani A (2008) A protocol for the rapid isolation of full geminivirus genomes from dried plant tissue. J Virol Methods 149:97–102PubMedCrossRefGoogle Scholar
  23. 23.
    Sikorski A, Arguello-Astorga GR, Dayaram A, Dobson RC, Varsani A (2012) Discovery of a novel circular single-stranded DNA virus from porcine faeces. Arch Virol 158:283–289PubMedCrossRefGoogle Scholar
  24. 24.
    van den Brand JM, van Leeuwen M, Schapendonk CM, Simon JH, Haagmans BL, Osterhaus AD, Smits SL (2012) Metagenomic analysis of the viral flora of pine marten and European badger feces. J Virol 86:2360–2365PubMedCrossRefGoogle Scholar
  25. 25.
    Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, Yang EC, Duffy S, Bhattacharya D (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Alyssa Sikorski
    • 1
  • Jonathan Kearvell
    • 2
  • Simon Elkington
    • 2
  • Anisha Dayaram
    • 1
  • Gerardo R. Argüello-Astorga
    • 3
  • Arvind Varsani
    • 1
    • 4
    • 5
  1. 1.School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.Department Of ConservationWaimakariri Area OfficeRangioraNew Zealand
  3. 3.División de Biología MolecularInstituto Potosino de Investigación Científica y TecnológicaSan Luis PotosíMexico
  4. 4.Biomolecular Interaction CentreUniversity of CanterburyChristchurchNew Zealand
  5. 5.Electron Microscope UnitUniversity of Cape TownCape TownSouth Africa

Personalised recommendations