Advertisement

Archives of Virology

, Volume 158, Issue 6, pp 1287–1296 | Cite as

Antiherpetic potential of 6-bromoindirubin-3′-acetoxime (BIO-acetoxime) in human oral epithelial cells

  • Mei-Ju Hsu
  • Shan-Ling Hung
Original Article

Abstract

Glycogen synthase kinase 3 (GSK-3) functions in the regulation of glycogen metabolism, in the cell cycle, and in immune responses and is targeted by some viruses to favor the viral life cycle. Inhibition of GSK-3 by 6-bromoindirubin-3′-acetoxime (BIO-acetoxime), a synthetic derivative of a compound from the Mediterranean mollusk Hexaplex trunculus, protects cells from varicella infection. In this study, we examined the effects of BIO-acetoxime against herpes simplex virus-1 (HSV-1) infection in human oral epithelial cells, which represent a natural target cell type. The results revealed that BIO-acetoxime relieves HSV-1-induced cytopathic effects and apoptosis. We also found that BIO-acetoxime reduced viral yields and the expression of different classes of viral proteins. Furthermore, addition of BIO-acetoxime before, simultaneously with or after HSV-1 infection significantly reduced viral yields. Collectively, BIO-acetoxime may suppress viral gene expression and protect oral epithelial cells from HSV-1 infection. These results suggest the possible involvement of GSK-3 in HSV-1 infection.

Keywords

Thymidine Kinase Viral Life Cycle Viral Yield Indirubin Oral Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This investigation was supported by the grant from Ministry of Education, Aim for the Top University Plan and by the Research Grant NSC 101-2314-B-010-033-MY2 from the National Science Council, Taiwan. The authors acknowledge the technical support provided by the Imaging Core Facility of Nanotechnology of the University System of Taiwan-National Yang-Ming University (UST-YMU), especially Pei-Jun Chen and Shu-Fen Lin for their technical support.

References

  1. 1.
    Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79:173–189PubMedCrossRefGoogle Scholar
  2. 2.
    Chen J, Silverstein S (1992) Herpes simplex viruses with mutations in the gene encoding ICP0 are defective in gene expression. J Virol 66:2916–2927PubMedGoogle Scholar
  3. 3.
    Chen SH, Cook WJ, Grove KL, Coen DM (1998) Human thymidine kinase can functionally replace herpes simplex virus type 1 thymidine kinase for viral replication in mouse sensory ganglia and reactivation from latency upon explant. J Virol 72:6710–6715PubMedGoogle Scholar
  4. 4.
    Cook WJ, Kramer MF, Walker RM, Burwell TJ, Holman HA, Coen DM, Knipe DM (2004) Persistent expression of chemokine and chemokine receptor RNAs at primary and latent sites of herpes simplex virus 1 infection. Virol J 1:1–12CrossRefGoogle Scholar
  5. 5.
    Du J, Wei Y, Liu L, Wang Y, Khairova R, Blumenthal R, Tragon T, Hunsberger JG, Machado-Vieira R, Drevets W, Wang YT, Manji HK (2010) A kinesin signaling complex mediates the ability of GSK-3beta to affect mood-associated behaviors. Proc Natl Acad Sci USA 107:11573–11578PubMedCrossRefGoogle Scholar
  6. 6.
    Evans D, Smith M, Golden R (2008) Antidepressants and HIV infection: effect of lithium chloride and desipramine on HIV replication. Depression 1:205–209CrossRefGoogle Scholar
  7. 7.
    Everett RD (1989) Construction and characterization of herpes simplex virus type 1 mutants with defined lesions in immediate early gene 1. J Gen Virol 70(Pt 5):1185–1202PubMedCrossRefGoogle Scholar
  8. 8.
    Everly DN Jr, Kusano S, Raab-Traub N (2004) Accumulation of cytoplasmic beta-catenin and nuclear glycogen synthase kinase 3beta in Epstein-Barr virus-infected cells. J Virol 78:11648–11655PubMedCrossRefGoogle Scholar
  9. 9.
    Field HJ (2001) Herpes simplex virus antiviral drug resistance—current trends and future prospects. J Clin Virol 21:261–269PubMedCrossRefGoogle Scholar
  10. 10.
    Fontaine-Rodriguez EC, Knipe DM (2008) Herpes simplex virus ICP27 increases translation of a subset of viral late mRNAs. J Virol 82:3538–3545PubMedCrossRefGoogle Scholar
  11. 11.
    Fumoto K, Hoogenraad CC, Kikuchi A (2006) GSK-3beta-regulated interaction of BICD with dynein is involved in microtubule anchorage at centrosome. Embo J 25:5670–5682PubMedCrossRefGoogle Scholar
  12. 12.
    Furman PA, St Clair MH, Spector T (1984) Acyclovir triphosphate is a suicide inactivator of the herpes simplex virus DNA polymerase. J Biol Chem 259:9575–9579PubMedGoogle Scholar
  13. 13.
    Haenchen SD, Utter JA, Bayless AM, Dobrowsky RT, Davido DJ (2010) Role of a cdk5-associated protein, p35, in herpes simplex virus type 1 replication in vivo. J Neurovirol 16:405–409PubMedCrossRefGoogle Scholar
  14. 14.
    Handler CG, Eisenberg RJ, Cohen GH (1996) Oligomeric structure of glycoproteins in herpes simplex virus type 1. J Virol 70:6067–6070PubMedGoogle Scholar
  15. 15.
    Heredia A, Davis C, Bamba D, Le N, Gwarzo MY, Sadowska M, Gallo RC, Redfield RR (2005) Indirubin-3’-monoxime, a derivative of a Chinese antileukemia medicine, inhibits P-TEFb function and HIV-1 replication. AIDS 19:2087–2095PubMedCrossRefGoogle Scholar
  16. 16.
    Hernandez F, Nido JD, Avila J, Villanueva N (2009) GSK3 inhibitors and disease. Mini Rev Med Chem 9:1024–1029PubMedCrossRefGoogle Scholar
  17. 17.
    Hertel L, Chou S, Mocarski ES (2007) Viral and cell cycle-regulated kinases in cytomegalovirus-induced pseudomitosis and replication. PLoS Pathog 3:e6PubMedCrossRefGoogle Scholar
  18. 18.
    Hochman N, Rones Y, Ehrlich J, Levy R, Zakay-Rones Z (1981) Antibodies to herpes simplex virus in human gingival fluid. J Periodontol 52:324–327PubMedCrossRefGoogle Scholar
  19. 19.
    Hsu MJ, Wu CY, Chiang HH, Lai YL, Hung SL (2010) PI3K/Akt signaling mediated apoptosis blockage and viral gene expression in oral epithelial cells during herpes simplex virus infection. Virus Res 153:36–43PubMedCrossRefGoogle Scholar
  20. 20.
    Hsuan SL, Chang SC, Wang SY, Liao TL, Jong TT, Chien MS, Lee WC, Chen SS, Liao JW (2009) The cytotoxicity to leukemia cells and antiviral effects of Isatis indigotica extracts on pseudorabies virus. J Ethnopharmacol 123:61–67PubMedCrossRefGoogle Scholar
  21. 21.
    Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102PubMedCrossRefGoogle Scholar
  22. 22.
    Kameswaran TR, Ramanibai R (2009) Indirubin-3-monooxime induced cell cycle arrest and apoptosis in Hep-2 human laryngeal carcinoma cells. Biomed Pharmacother 63:146–154PubMedCrossRefGoogle Scholar
  23. 23.
    Kehn-Hall K, Narayanan A, Lundberg L, Sampey G, Pinkham C, Guendel I, Van Duyne R, Senina S, Schultz KL, Stavale E, Aman MJ, Bailey C, Kashanchi F (2012) Modulation of GSK-3beta activity in Venezuelan equine encephalitis virus infection. PLoS ONE 7:e34761PubMedCrossRefGoogle Scholar
  24. 24.
    Koyama AH, Fukumori T, Fujita M, Irie H, Adachi A (2000) Physiological significance of apoptosis in animal virus infection. Microbes Infect 2:1111–1117PubMedCrossRefGoogle Scholar
  25. 25.
    Kubat NJ, Amelio AL, Giordani NV, Bloom DC (2004) The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription. J Virol 78:12508–12518PubMedCrossRefGoogle Scholar
  26. 26.
    Kwun HJ, Yim SW, Lee DH, Jang KL (1999) Activation of the thymidine kinase promoter by herpes simplex virus type 1 immediate early proteins. Mol Cells 9:277–280PubMedGoogle Scholar
  27. 27.
    Lin SC, Liu CJ, Chiu CP, Chang SM, Lu SY, Chen YJ (2004) Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. J Oral Pathol Med 33:79–86PubMedCrossRefGoogle Scholar
  28. 28.
    Maggirwar SB, Tong N, Ramirez S, Gelbard HA, Dewhurst S (1999) HIV-1 Tat-mediated activation of glycogen synthase kinase-3beta contributes to Tat-mediated neurotoxicity. J Neurochem 73:578–586PubMedCrossRefGoogle Scholar
  29. 29.
    Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, Leost M, Ryan XP, Vonica CA, Brivanlou A, Dajani R, Crovace C, Tarricone C, Musacchio A, Roe SM, Pearl L, Greengard P (2003) GSK-3-selective inhibitors derived from tyrian purple indirubins. Chem Biol 10:1255–1266PubMedCrossRefGoogle Scholar
  30. 30.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  31. 31.
    Radtke K, Kieneke D, Wolfstein A, Michael K, Steffen W, Scholz T, Karger A, Sodeik B (2010) Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures. PLoS Pathog 6:e1000991PubMedCrossRefGoogle Scholar
  32. 32.
    Rahaus M, Desloges N, Wolff MH (2007) Varicella-zoster virus requires a functional PI3K/Akt/GSK-3alpha/beta signaling cascade for efficient replication. Cell Signal 19:312–320PubMedCrossRefGoogle Scholar
  33. 33.
    Roizman B, Knipe DM (2001) Herpes simplex viruses and their replication in fields virology, 4 edn. Lippincott, Williams & Wilkins Inc, Philadelphia 2: 2399–2460Google Scholar
  34. 34.
    Ryves WJ, Harwood AJ (2001) Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun 280:720–725PubMedCrossRefGoogle Scholar
  35. 35.
    Sacks WR, Greene CC, Aschman DP, Schaffer PA (1985) Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J Virol 55:796–805PubMedGoogle Scholar
  36. 36.
    Sacks WR, Schaffer PA (1987) Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. J Virol 61:829–839PubMedGoogle Scholar
  37. 37.
    Scharstuhl A, Mutsaers HA, Pennings SW, Russel FG, Wagener FA (2009) Involvement of VDAC, Bax and ceramides in the efflux of AIF from mitochondria during curcumin-induced apoptosis. PLoS ONE 4:e6688PubMedCrossRefGoogle Scholar
  38. 38.
    Sethi G, Ahn KS, Sandur SK, Lin X, Chaturvedi MM, Aggarwal BB (2006) Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappa B signaling pathway. J Biol Chem 281:23425–23435PubMedCrossRefGoogle Scholar
  39. 39.
    Sodeik B, Ebersold MW, Helenius A (1997) Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136:1007–1021PubMedCrossRefGoogle Scholar
  40. 40.
    Spokoini R, Kfir-Erenfeld S, Yefenof E, Sionov RV (2010) Glycogen synthase kinase-3 plays a central role in mediating glucocorticoid-induced apoptosis. Mol Endocrinol 24:1136–1150PubMedCrossRefGoogle Scholar
  41. 41.
    Sui X, Yin J, Ren X (2010) Antiviral effect of diammonium glycyrrhizinate and lithium chloride on cell infection by pseudorabies herpesvirus. Antiviral Res 85:346–353PubMedCrossRefGoogle Scholar
  42. 42.
    Wang H, Brown J, Martin M (2011) Glycogen synthase kinase 3: a point of convergence for the host inflammatory response. Cytokine 53:130–140PubMedCrossRefGoogle Scholar
  43. 43.
    Whitley RJ, Roizman B (2001) Herpes simplex virus infections. Lancet 357:1513–1518PubMedCrossRefGoogle Scholar
  44. 44.
    Wilcox CL, Crnic LS, Pizer LI (1992) Replication, latent infection, and reactivation in neuronal culture with a herpes simplex virus thymidine kinase-negative mutant. Virology 187:348–352PubMedCrossRefGoogle Scholar
  45. 45.
    Woodgett JR (2001) Judging a protein by more than its name: GSK-3. Sci STKE 2001:RE12Google Scholar
  46. 46.
    Wozniak MA, Frost AL, Itzhaki RF (2009) Alzheimer’s disease-specific tau phosphorylation is induced by herpes simplex virus type 1. J Alzheimers Dis 16:341–350PubMedGoogle Scholar
  47. 47.
    Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, Berman SM, Markowitz LE (2006) Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 296:964–973PubMedCrossRefGoogle Scholar
  48. 48.
    Yamauchi K, Kurosaka A (2010) Expression and function of glycogen synthase kinase-3 in human hair follicles. Arch Dermatol Res 302:263–270PubMedCrossRefGoogle Scholar
  49. 49.
    Yuan J, Zhang J, Wong BW, Si X, Wong J, Yang D, Luo H (2005) Inhibition of glycogen synthase kinase 3beta suppresses coxsackievirus-induced cytopathic effect and apoptosis via stabilization of beta-catenin. Cell Death Differ 12:1097–1106PubMedCrossRefGoogle Scholar
  50. 50.
    Ziaie Z, Kefalides NA (1989) Lithium chloride restores host protein synthesis in herpes simplex virus-infected endothelial cells. Biochem Biophys Res Commun 160:1073–1078PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Institute of Oral BiologyNational Yang-Ming UniversityTaipeiTaiwan
  2. 2.Department of DentistryNational Yang-Ming UniversityTaipeiTaiwan
  3. 3.Department of StomatologyTaipei Veterans General HospitalTaipeiTaiwan

Personalised recommendations