Archives of Virology

, Volume 158, Issue 5, pp 933–942

Characterization and immunogenicity of norovirus capsid-derived virus-like particles purified by anion exchange chromatography

Original Article

Abstract

Recombinant baculovirus (BV) expression systems are widely applied in the production of viral capsid proteins and virus-like particles (VLPs) for use as immunogens and vaccine candidates. Traditional density gradient purification of VLPs does not enable complete elimination of BV-derived impurities, including live viruses, envelope glycoprotein gp64 and baculoviral DNA. We used an additional purification system based on ionic strength to purify norovirus (NoV) GII-4 capsid-derived VLPs. The anion exchange chromatography purification led to highly purified VLPs free from BV impurities with intact morphology. In addition, highly purified VLPs induced strong NoV-specific antibody responses in BALB/c mice. Here, we describe a method for NoV VLP purification and several methods for determining their purity, including quantitative PCR for BV DNA detection.

References

  1. 1.
    Abe T, Hemmi H, Miyamoto H et al (2005) Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J Virol 79:2847–2858. doi:10.1128/JVI.79.5.2847-2858.2005 PubMedCrossRefGoogle Scholar
  2. 2.
    Abe T, Takahashi H, Hamazaki H et al (2003) Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J Immunol 171:1133–1139PubMedGoogle Scholar
  3. 3.
    Andreadis TG, Becnel JJ, White SE (2003) Infectivity and pathogenicity of a novel baculovirus, CuniNPV from Culex nigripalpus (Diptera: Culicidae) for thirteen species and four genera of mosquitoes. J Med Entomol 40:512–517PubMedCrossRefGoogle Scholar
  4. 4.
    Atmar RL, Bernstein DI, Harro CD et al (2011) Norovirus vaccine against experimental human Norwalk Virus illness. N Engl J Med 365:2178–2187. doi:10.1056/NEJMoa1101245 PubMedCrossRefGoogle Scholar
  5. 5.
    Ausar SF, Foubert TR, Hudson MH et al (2006) Conformational stability and disassembly of Norwalk virus-like particles. Effect of pH and temperature. J Biol Chem 281:19478–19488. doi:10.1074/jbc.M603313200 PubMedCrossRefGoogle Scholar
  6. 6.
    Ball JM, Graham DY, Opekun AR et al (1999) Recombinant Norwalk virus-like particles given orally to volunteers: phase I study. Gastroenterology 117:40–48PubMedCrossRefGoogle Scholar
  7. 7.
    Ball JM, Hardy ME, Atmar RL et al (1998) Oral immunization with recombinant Norwalk virus-like particles induces a systemic and mucosal immune response in mice. J Virol 72:1345–1353PubMedGoogle Scholar
  8. 8.
    Becnel J, White S, Moser B et al (2001) Epizootiology and transmission of a newly discovered baculovirus from the mosquitoes Culex nigripalpus and C. quinquefasciatus. J Gen Virol 82:275–282PubMedGoogle Scholar
  9. 9.
    Bellier B, Dalba C, Clerc B et al (2006) DNA vaccines encoding retrovirus-based virus-like particles induce efficient immune responses without adjuvant. Vaccine 24:2643–2655. doi:10.1016/j.vaccine.2005.11.034 PubMedCrossRefGoogle Scholar
  10. 10.
    Blazevic V, Lappalainen S, Nurminen K et al (2011) Norovirus VLPs and rotavirus VP6 protein as combined vaccine for childhood gastroenteritis. Vaccine 29:8126–8133. doi:10.1016/j.vaccine.2011.08.026 PubMedCrossRefGoogle Scholar
  11. 11.
    Buck CB, Thompson CD, Pang YY et al (2005) Maturation of papillomavirus capsids. J Virol 79:2839–2846. doi:10.1128/JVI.79.5.2839-2846.2005 PubMedCrossRefGoogle Scholar
  12. 12.
    Buesa J, Collado B, Lopez-Andujar P et al (2002) Molecular epidemiology of caliciviruses causing outbreaks and sporadic cases of acute gastroenteritis in Spain. J Clin Microbiol 40:2854–2859PubMedCrossRefGoogle Scholar
  13. 13.
    Burova E, Ioffe E (2005) Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther 12(Suppl 1):S5–17. doi:10.1038/sj.gt.3302611 PubMedCrossRefGoogle Scholar
  14. 14.
    Cannon JL, Lindesmith LC, Donaldson EF et al (2009) Herd immunity to GII.4 noroviruses is supported by outbreak patient sera. J Virol 83:5363–5374. doi:10.1128/JVI.02518-08 PubMedCrossRefGoogle Scholar
  15. 15.
    CBER g (2007) US Food and Drug Administration, Center for Biologics Evaluation and ResearchGoogle Scholar
  16. 16.
    Crawford SE, Labbe M, Cohen J et al (1994) Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J Virol 68:5945–5952PubMedGoogle Scholar
  17. 17.
    Cruz PE, Maranga L, Carrondo MJ (2002) Integrated process optimization: lessons from retrovirus and virus-like particle production. J Biotechnol 99:199–214PubMedCrossRefGoogle Scholar
  18. 18.
    Delchambre M, Gheysen D, Thines D et al (1989) The GAG precursor of simian immunodeficiency virus assembles into virus-like particles. EMBO J 8:2653–2660PubMedGoogle Scholar
  19. 19.
    Deml L, Speth C, Dierich MP et al (2005) Recombinant HIV-1 Pr55gag virus-like particles: potent stimulators of innate and acquired immune responses. Mol Immunol 42:259–277. doi:10.1016/j.molimm.2004.06.028 PubMedCrossRefGoogle Scholar
  20. 20.
    El-Kamary SS, Pasetti MF, Mendelman PM et al (2010) Adjuvanted intranasal Norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. J Infect Dis 202:1649–1658. doi:10.1086/657087 PubMedCrossRefGoogle Scholar
  21. 21.
    Glass RI, Noel J, Ando T et al (2000) The epidemiology of enteric caliciviruses from humans: a reassessment using new diagnostics. J Infect Dis 181(Suppl 2):S254–261. doi:10.1086/315588 PubMedCrossRefGoogle Scholar
  22. 22.
    Glass RI, Parashar UD, Estes MK (2009) Norovirus gastroenteritis. N Engl J Med 361:1776–1785. doi:10.1056/NEJMra0804575 PubMedCrossRefGoogle Scholar
  23. 23.
    Gronowski AM, Hilbert DM, Sheehan KC et al (1999) Baculovirus stimulates antiviral effects in mammalian cells. J Virol 73:9944–9951PubMedGoogle Scholar
  24. 24.
    Hansman GS, Natori K, Shirato-Horikoshi H et al (2006) Genetic and antigenic diversity among noroviruses. J Gen Virol 87:909–919. doi:10.1099/vir.0.81532-0 PubMedCrossRefGoogle Scholar
  25. 25.
    Harrington PR, Lindesmith L, Yount B et al (2002) Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice. J Virol 76:12335–12343PubMedCrossRefGoogle Scholar
  26. 26.
    Haynes JR, Dokken L, Wiley JA et al (2009) Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine 27:530–541. doi:10.1016/j.vaccine.2008.11.011 PubMedCrossRefGoogle Scholar
  27. 27.
    Hervas-Stubbs S, Rueda P, Lopez L et al (2007) Insect baculoviruses strongly potentiate adaptive immune responses by inducing type I IFN. J Immunol 178:2361–2369PubMedGoogle Scholar
  28. 28.
    Huhti L, Blazevic V, Nurminen K et al (2010) A comparison of methods for purification and concentration of norovirus GII-4 capsid virus-like particles. Arch Virol 155:1855–1858. doi:10.1007/s00705-010-0768-z PubMedCrossRefGoogle Scholar
  29. 29.
    Iritani N, Seto T, Hattori H et al (2007) Humoral immune responses against norovirus infections of children. J Med Virol 79:1187–1193. doi:10.1002/jmv.20897 PubMedCrossRefGoogle Scholar
  30. 30.
    Iritani N, Seto Y, Kubo H et al (2003) Prevalence of Norwalk-like virus infections in cases of viral gastroenteritis among children in Osaka City, Japan. J Clin Microbiol 41:1756–1759PubMedCrossRefGoogle Scholar
  31. 31.
    Jegerlehner A, Storni T, Lipowsky G et al (2002) Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. Eur J Immunol 32:3305–3314PubMedCrossRefGoogle Scholar
  32. 32.
    Jehle JA, Blissard GW, Bonning BC et al (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257–1266. doi:10.1007/s00705-006-0763-6 PubMedCrossRefGoogle Scholar
  33. 33.
    Jiang X, Wang M, Graham DY et al (1992) Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66:6527–6532PubMedGoogle Scholar
  34. 34.
    Kalbfuss B, Wolff M, Geisler L et al (2007) Direct capture of influenza A virus from cell culture supernatant with Sartobind anion-exchange membrane adsorbers. J Membr Sci 299:251–260. doi:10.1016/j.memsci.2007.04.048 CrossRefGoogle Scholar
  35. 35.
    Kim HJ, Lim SJ, Kwag HL et al (2012) The choice of resin-bound ligand affects the structure and immunogenicity of column-purified human papillomavirus type 16 virus-like particles. PLoS ONE 7:e35893. doi:10.1371/journal.pone.0035893 PubMedCrossRefGoogle Scholar
  36. 36.
    Koho T, Mantyla T, Laurinmaki P et al (2012) Purification of norovirus-like particles (VLPs) by ion exchange chromatography. J Virol Methods 181:6–11. doi:10.1016/j.jviromet.2012.01.003 PubMedCrossRefGoogle Scholar
  37. 37.
    Lenz P, Day PM, Pang YY et al (2001) Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol 166:5346–5355PubMedGoogle Scholar
  38. 38.
    Lew JF, Valdesuso J, Vesikari T et al (1994) Detection of Norwalk virus or Norwalk-like virus infections in Finnish infants and young children. J Infect Dis 169:1364–1367PubMedCrossRefGoogle Scholar
  39. 39.
    Lopman B, Vennema H, Kohli E et al (2004) Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet 363:682–688. doi:10.1016/S0140-6736(04)15641-9 PubMedCrossRefGoogle Scholar
  40. 40.
    Lu X, Chen Y, Bai B et al (2007) Immune responses against severe acute respiratory syndrome coronavirus induced by virus-like particles in mice. Immunology 122:496–502. doi:10.1111/j.1365-2567.2007.02676.x PubMedCrossRefGoogle Scholar
  41. 41.
    Makidon PE, Bielinska AU, Nigavekar SS et al (2008) Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS ONE 3:e2954. doi:10.1371/journal.pone.0002954 PubMedCrossRefGoogle Scholar
  42. 42.
    Maranga L, Rueda P, Antonis AF et al (2002) Large scale production and downstream processing of a recombinant porcine parvovirus vaccine. Appl Microbiol Biotechnol 59:45–50. doi:10.1007/s00253-002-0976-x PubMedCrossRefGoogle Scholar
  43. 43.
    Morenweiser R (2005) Downstream processing of viral vectors and vaccines. Gene Ther 12(Suppl 1):S103–110. doi:10.1038/sj.gt.3302624 PubMedCrossRefGoogle Scholar
  44. 44.
    Pang XL, Joensuu J, Vesikari T (1999) Human calicivirus-associated sporadic gastroenteritis in Finnish children less than two years of age followed prospectively during a rotavirus vaccine trial. Pediatr Infect Dis J 18:420–426PubMedCrossRefGoogle Scholar
  45. 45.
    Park MA, Kim HJ, Kim HJ (2008) Optimum conditions for production and purification of human papillomavirus type 16 L1 protein from Saccharomyces cerevisiae. Protein Expr Purif 59:175–181. doi:10.1016/j.pep.2008.01.021 PubMedCrossRefGoogle Scholar
  46. 46.
    Patel MM, Widdowson MA, Glass RI et al (2008) Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14:1224–1231PubMedCrossRefGoogle Scholar
  47. 47.
    Pattenden LK, Middelberg AP, Niebert M et al (2005) Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol 23:523–529. doi:10.1016/j.tibtech.2005.07.011 PubMedCrossRefGoogle Scholar
  48. 48.
    Peixoto C, Sousa MF, Silva AC et al (2007) Downstream processing of triple layered rotavirus like particles. J Biotechnol 127:452–461. doi:10.1016/j.jbiotec.2006.08.002 PubMedCrossRefGoogle Scholar
  49. 49.
    Pomfret TC, Gagnon JM Jr, Gilchrist AT (2011) Quadrivalent human papillomavirus (HPV) vaccine: a review of safety, efficacy, and pharmacoeconomics. J Clin Pharm Ther 36:1–9. doi:10.1111/j.1365-2710.2009.01150.x PubMedCrossRefGoogle Scholar
  50. 50.
    Prasad BV, Rothnagel R, Jiang X et al (1994) Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J Virol 68:5117–5125PubMedGoogle Scholar
  51. 51.
    Roldao A, Mellado MC, Castilho LR et al (2010) Virus-like particles in vaccine development. Expert Rev Vaccines 9:1149–1176. doi:10.1586/erv.10.115 PubMedCrossRefGoogle Scholar
  52. 52.
    Rueda P, Fominaya J, Langeveld JP et al (2000) Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles. Vaccine 19:726–734PubMedCrossRefGoogle Scholar
  53. 53.
    Sailaja G, Skountzou I, Quan FS et al (2007) Human immunodeficiency virus-like particles activate multiple types of immune cells. Virology 362:331–341. doi:10.1016/j.virol.2006.12.014 PubMedCrossRefGoogle Scholar
  54. 54.
    Saliki JT, Mizak B, Flore HP et al (1992) Canine parvovirus empty capsids produced by expression in a baculovirus vector: use in analysis of viral properties and immunization of dogs. J Gen Virol 73(Pt 2):369–374PubMedCrossRefGoogle Scholar
  55. 55.
    Shi L, Sanyal G, Ni A et al (2005) Stabilization of human papillomavirus virus-like particles by non-ionic surfactants. J Pharm Sci 94:1538–1551. doi:10.1002/jps.20377 PubMedCrossRefGoogle Scholar
  56. 56.
    Siebenga J, Kroneman A, Vennema H et al (2008) Food-borne viruses in Europe network report: the norovirus GII.4 2006b (for US named Minerva-like, for Japan Kobe034-like, for UK V6) variant now dominant in early seasonal surveillance. Euro Surveill 13:8009Google Scholar
  57. 57.
    Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3:2156–2165PubMedGoogle Scholar
  58. 58.
    Tamminen K, Huhti L, Koho T et al (2012) A comparison of immunogenicity of norovirus GII-4 virus-like particles and P-particles. Immunology 135:89–99. doi:10.1111/j.1365-2567.2011.03516.x PubMedCrossRefGoogle Scholar
  59. 59.
    Velasquez LS, Shira S, Berta AN et al (2011) Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. Vaccine 29:5221–5231. doi:10.1016/j.vaccine.2011.05.027 PubMedCrossRefGoogle Scholar
  60. 60.
    Vicente T, Roldao A, Peixoto C et al (2011) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107(Suppl):S42–48. doi:10.1016/j.jip.2011.05.004 PubMedCrossRefGoogle Scholar
  61. 61.
    Vicente T, Sousa MFQ, Peixoto C et al (2008) Anion-exchange membrane chromatography for purification of rotavirus-like particles. J Membr Sci 311:270–283. doi:10.1016/j.memsci.2007.12.021 CrossRefGoogle Scholar
  62. 62.
    Warfield KL, Bosio CM, Welcher BC et al (2003) Ebola virus-like particles protect from lethal Ebola virus infection. Proc Natl Acad Sci USA 100:15889–15894. doi:10.1073/pnas.2237038100 PubMedCrossRefGoogle Scholar
  63. 63.
    Woo MK, An JM, Kim JD et al (2008) Expression and purification of human papillomavirus 18 L1 virus-like particle from saccharomyces cerevisiae. Arch Pharm Res 31:205–209PubMedCrossRefGoogle Scholar
  64. 64.
    World Health Organization (2012) Document QAS/11.413 Final. March 2012Google Scholar
  65. 65.
    Wu C, Soh KY, Wang S (2007) Ion-exchange membrane chromatography method for rapid and efficient purification of recombinant baculovirus and baculovirus gp64 protein. Hum Gene Ther 18:665–672. doi:10.1089/hum.2007.020 PubMedCrossRefGoogle Scholar
  66. 66.
    Zheng DP, Ando T, Fankhauser RL et al (2006) Norovirus classification and proposed strain nomenclature. Virology 346:312–323. doi:10.1016/j.virol.2005.11.015 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • L. Huhti
    • 1
  • K. Tamminen
    • 1
  • T. Vesikari
    • 1
  • V. Blazevic
    • 1
  1. 1.Vaccine Research CenterUniversity of Tampere Medical SchoolTampereFinland

Personalised recommendations