Advertisement

Archives of Virology

, Volume 158, Issue 2, pp 349–358 | Cite as

Griffithsin inhibits Japanese encephalitis virus infection in vitro and in vivo

  • Hassan Z. A. Ishag
  • Chen Li
  • Li Huang
  • Ming-xia Sun
  • Fengjuan Wang
  • Bo Ni
  • Thowaiba Malik
  • Pu-yan Chen
  • Xiang Mao
Original Article

Abstract

Griffithsin (GRFT) is a broad-spectrum antiviral protein that is effective against several glycosylated viruses. Here, we have evaluated the in vitro and in vivo antiviral activities of GRFT against Japanese encephalitis virus (JEV) infection. In vitro experiments showed that treatment of JEV with GRFT before inoculation of BHK-21 cells inhibited infection in a dose-dependent manner, with 99 % inhibition at 100 μg/ml and a 50 % inhibitory concentration (IC50) of 265 ng/ml (20 nM). Binding assays suggested that binding of GRFT to JEV virions inhibited JEV infection. In vivo experiment showed that GRFT (5 mg/kg) administered intraperitoneally before virus infection could completely prevent mortality in mice challenged intraperitoneally with a lethal dose of JEV. Our study also suggested that GRFT prevents JEV infection at the entry phase by targeting the virus. Collectively, our data demonstrate that GRFT is an antiviral agent with potential application in the development of therapeutics against JEV or other flavivirus infections.

Keywords

Antiviral Activity Japanese Encephalitis Virus Plaque Assay Japanese Encephalitis Virus Japanese Encephalitis Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This project was funded by the priority academic program development of Jiangsu Higher Education Institutions.

References

  1. 1.
    Adams EW, Ratner DM, Bokesch HR, McMahon JB, O’Keefe BR, Seeberger PH (2004) Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology: glycan-dependent gp120/protein interactions. Chem Biol 11:875–881PubMedCrossRefGoogle Scholar
  2. 2.
    Alexandre KB, Gray ES, Pantophlet R, Moore PL, McMahon JB, Chakauya E, O’Keefe BR, Chikwamba R, Morris L (2011) Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site. J Virol 85:9039PubMedCrossRefGoogle Scholar
  3. 3.
    Balzarini J (2007) Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nat Rev Microbiol 5:583–597PubMedCrossRefGoogle Scholar
  4. 4.
    Bolmstedt AJ, O’Keefe BR, Shenoy SR, McMahon JB, Boyd MR (2001) Cyanovirin-N defines a new class of antiviral agent targeting N-linked, high-mannose glycans in an oligosaccharide-specific manner. Mol Pharmacol 59:949–954PubMedGoogle Scholar
  5. 5.
    Brandt WE (1990) From the World Health Organization: development of dengue and Japanese encephalitis vaccines. J Infect Dis 162:577–583PubMedCrossRefGoogle Scholar
  6. 6.
    Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA (2004) Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23:728–738PubMedCrossRefGoogle Scholar
  7. 7.
    Cao Y, Qiao J, Li Y, Lu W (2007) De novo synthesis, constitutive expression of Aspergillus sulphureus β-xylanase gene in Pichia pastoris and partial enzymic characterization. Appl Microbiol Biotechnol 76:579–585PubMedCrossRefGoogle Scholar
  8. 8.
    Chiu YH, Chan Y-L, Li T-L, Wu CJ (2011) Inhibition of Japanese encephalitis virus infection by the sulfated polysaccharides extracts from Ulva lactuca. Mar Biotechnol 12:1–11Google Scholar
  9. 9.
    Dutta K, Rangarajan PN, Vrati S, Basu A (2010) Japanese encephalitis: pathogenesis, prophylactics and therapeutics. Curr Sci 98:326Google Scholar
  10. 10.
    Emau P, Tian B, O’keefe B, Mori T, McMahon J, Palmer K, Jiang Y, Bekele G, Tsai C (2007) Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide. J Med Primatol 36:244–253PubMedCrossRefGoogle Scholar
  11. 11.
    Giomarelli B, Schumacher KM, Taylor TE, Sowder RC 2nd, Hartley JL, McMahon JB, Mori T (2006) Recombinant production of anti-HIV protein, griffithsin, by auto-induction in a fermentor culture. Protein Expres Purif 47:194–202CrossRefGoogle Scholar
  12. 12.
    Huang C (1982) Studies of Japanese encephalitis in China. Adv Virus Res 27:71–101PubMedCrossRefGoogle Scholar
  13. 13.
    Kim JM, Yun SI, Song BH, Hahn YS, Lee CH, Oh HW, Lee YM (2008) A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J Virol 82:7846PubMedCrossRefGoogle Scholar
  14. 14.
    Lindenbach BD, Thiel H-Ju, Rice CM (2007) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 1108–1109Google Scholar
  15. 15.
    Meuleman P, Albecka A, Belouzard S, Vercauteren K, Verhoye L, Wychowski C, Leroux-Roels G, Palmer KE, Dubuisson J (2011) Griffithsin has antiviral activity against hepatitis C virus. Antimicrob Agents Ch 55:5159–5167CrossRefGoogle Scholar
  16. 16.
    Mori T, O’Keefe BR, Sowder RC 2nd, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW Jr, McMahon JB, Boyd MR (2005) Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 280:9345–9353PubMedCrossRefGoogle Scholar
  17. 17.
    O’Keefe BR, Vojdani F, Buffa V, Shattock RJ, Montefiori DC, Bakke J, Mirsalis J, d’Andrea AL, Hume SD, Bratcher B (2009) Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. PNAS 106:6099PubMedCrossRefGoogle Scholar
  18. 18.
    O’Keefe BR, Giomarelli B, Barnard DL, Shenoy SR, Chan PKS, McMahon JB, Palmer KE, Barnett BW, Meyerholz DK, Wohlford-Lenane CL (2010) Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol 84:2511PubMedCrossRefGoogle Scholar
  19. 19.
    Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497Google Scholar
  20. 20.
    Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285:194–204PubMedCrossRefGoogle Scholar
  21. 21.
    Sebastian L, Desai A, Shampur MN, Perumal Y, Sriram D, Vasanthapuram R (2008) N-methylisatin-beta-thiosemicarbazone derivative (SCH 16) is an inhibitor of Japanese encephalitis virus infection in vitro and in vivo. Virol J 5:64PubMedCrossRefGoogle Scholar
  22. 22.
    Sebastian L, Desai A, Madhusudana SN, Ravi V (2009) Pentoxifylline inhibits replication of Japanese encephalitis virus: a comparative study with ribavirin. Int J Antimicrob Agents 33:168–173PubMedCrossRefGoogle Scholar
  23. 23.
    Sumiyoshi H, Mori C, Fuke I, Morita K, Kuhara S, Kondou J, Kikuchi Y, Nagamatu H, Igarashi A (1987) Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161:497–510PubMedCrossRefGoogle Scholar
  24. 24.
    Winer J, Jung CKS, Shackel I, Williams PM (1999) Development and validation of Real-Time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytesin vitro. Anal Biochem 270:41–49PubMedCrossRefGoogle Scholar
  25. 25.
    Yan Y, Kang B (2010) Regulation of Vid-dependent degradation of FBPase by TCO89, a component of TOR Complex 1. Int J Biol Sci 6:361PubMedCrossRefGoogle Scholar
  26. 26.
    Yang Y, Ye J, Yang X, Jiang R, Chen H, Cao S (2011) Japanese encephalitis virus infection induces changes of mRNA profile of mouse spleen and brain. Virol J 8:80PubMedCrossRefGoogle Scholar
  27. 27.
    Ziolkowska NE, O’Keefe BR, Mori T, Zhu C, Giomarelli B, Vojdani F, Palmer KE, McMahon JB, Wlodawer A (2006) Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding. Structure 14:1127–1135PubMedCrossRefGoogle Scholar
  28. 28.
    Ziółkowska NE, Wlodawer A (2006) Structural studies of algal lectins with anti-HIV activity. Acta Biochim Pol 53:617–626PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Hassan Z. A. Ishag
    • 1
    • 2
  • Chen Li
    • 1
  • Li Huang
    • 1
  • Ming-xia Sun
    • 1
  • Fengjuan Wang
    • 1
  • Bo Ni
    • 1
  • Thowaiba Malik
    • 1
  • Pu-yan Chen
    • 1
  • Xiang Mao
    • 1
  1. 1.College of Veterinary Medicine, Nanjing Agricultural UniversityNanjingChina
  2. 2.College of Veterinary Science, Nyala UniversityNyalaSudan

Personalised recommendations