Archives of Virology

, Volume 158, Issue 1, pp 113–122 | Cite as

Complete genome sequence analysis of Japanese encephalitis virus isolated from a horse in India

  • Harisankar Singha
  • Baldev R. Gulati
  • Prabhat Kumar
  • Birendra K. Singh
  • Nitin Virmani
  • Raj K. Singh
Original Article

Abstract

The complete genome of the Japanese encephalitis virus (JEV) strain JEV/eq/India/H225/2009(H225), isolated from an infected horse in India, was sequenced and compared to previously published JEV genomes. H225 genome was 10,977-nucleotides long, comprising a single ORF of 10,299-nucleotides, a 5′-UTR of 95 nucleotides and a 3′-UTR of 582 nucleotides. The H225 genome showed high levels of sequence identity with 47 fully sequenced JEV genomes, ranging from 99.3 % to 75.5 % for nucleotides and 99.2 % to 91.5 % for amino acid sequences. Phylogenetic analysis of the full-length sequence indicated that the H225 strain belongs to genotype III and is closely related to the Indian JEV strain Vellore P20778. A comparison of amino acids associated with neurovirulence in the E proteins and non-structural proteins of known virulent and attenuated JEV strains suggested H225 to be a highly virulent strain. This is the first report of whole-genome sequencing of a genotype III JEV genome isolated from equines.

Keywords

Japanese Encephalitis Virus Japanese Encephalitis H225 Strain Japanese Encephalitis Virus Murray Valley Encephalitis Virus 

Notes

Acknowledgments

We thank the Indian Council of Agricultural Research, New Delhi, for providing necessary financial assistance. The technical assistance of Mr. P. P. Choudhury (T-5), National Research Centre on Equines, Hisar, India, is also highly appreciated.

References

  1. 1.
    Ali A, Igarashi A (1997) Antigenic and genetic variations among Japanese encephalitis virus strains belong to genotype 1. Microbiol Immunol 41:241–252PubMedGoogle Scholar
  2. 2.
    Arroyo J, Guirakhoo F, Fenner S, Zhang ZX, Monath TP, Chambers TJ (2001) Molecular basis for attenuation of neurovirulence of a yellow fever/Japanese encephalitis virus chimera vaccine (Chimeri Vax-JE). J Virol 75:934–942PubMedCrossRefGoogle Scholar
  3. 3.
    Brinton MA, Fernandez AV, Dispoto JH (1986) The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153:113–121PubMedCrossRefGoogle Scholar
  4. 4.
    Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, Marfin AA, Solomon T, Tsai TF, Tsu VD, Ginsburg AS (2011) Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89:766–774PubMedCrossRefGoogle Scholar
  5. 5.
    Cao QS, Li XM, Zhu QY, Wang DD, Chen HC, Qian P (2011) Isolation and molecular characterization of genotype 1 Japanese encephalitis virus, SX09S-01, from pigs in China. Virol J 8:472PubMedCrossRefGoogle Scholar
  6. 6.
    Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688PubMedCrossRefGoogle Scholar
  7. 7.
    Chen WR, Tesh RB, Rico-Hesse R (1990) Genetic variation of Japanese encephalitis virus in nature. J Gen Virol 71:2915–2922PubMedCrossRefGoogle Scholar
  8. 8.
    Chen WR, Rico-Hesse R, Tesh RB (1992) A new genotype of Japanese encephalitis virus from Indonesia. Am J Trop Med Hyg 47:61–69PubMedGoogle Scholar
  9. 9.
    Fulmali PV, Sapkal GN, Athawale S, Gore MM, Mishra AC, Bondre VP (2011) Introduction of Japanese encephalitis virus genotype I, India. Emerg Infect Dis 17:319–321PubMedCrossRefGoogle Scholar
  10. 10.
    Ghosh D, Basu A (2009) Japanese encephalitis-pathological and clinical perspective. PLoS Negl Trop Dis 3:e437PubMedCrossRefGoogle Scholar
  11. 11.
    Gulati BR, Singha H, Singh BK, Virmani N, Khurana SK, Singh RK (2011) Serosurveillance for Japanese encephalitis virus infection among equines in India. J Vet Sci 12:341–345PubMedCrossRefGoogle Scholar
  12. 12.
    Gulati BR, Singha H, Singh BK, Virmani N, Kumar S, Singh RK (2012) Isolation and genetic characterization of Japanese encephalitis virus from equines in India. J Vet Sci 13:111–118PubMedCrossRefGoogle Scholar
  13. 13.
    Hashimoto H, Nomoto A, Watanabe K, Mori T, Takezawa T, Aizawa C, Takegami T, Hiramatsu K (1988) Molecular cloning and complete nucleotide sequence of the genome of Japanese encephalitis virus Beijing-1 strain. Virus Genes 1:305–317PubMedCrossRefGoogle Scholar
  14. 14.
    Kabilan L, Rajendran R, Arunachalam N, Ramesh S, Srinivasan S, Samuel PP, Dash AP (2004) Japanese encephalitis in India: an overview. Indian J Pediatr 71:609–615PubMedCrossRefGoogle Scholar
  15. 15.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  16. 16.
    Kolaskar AS, Kulkarni-Kale U (1999) Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. Virology 261:31–42PubMedCrossRefGoogle Scholar
  17. 17.
    Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB (1998) Phylogeny of the genus Flavivirus. J Virol 72:73–83PubMedGoogle Scholar
  18. 18.
    Li MH, Fu SH, Chen WX, Wang HY, Guo YH, Liu QY, Li YX, Luo HM, Da W, Duo Ji DZ, Ye XM, Liang GD (2011) Genotype v Japanese encephalitis virus is emerging. PLoS Negl Trop Dis 5:e1231PubMedCrossRefGoogle Scholar
  19. 19.
    Lobigs M, Usha R, Nestorowicz A, Marshall ID, Weir RC, Dalgarno L (1990) Host cell selection of Murray Valley encephalitis variants altered at an RGD sequence in the envelope protein and in mouse virulence. Virology 176:587–595PubMedCrossRefGoogle Scholar
  20. 20.
    Mangada MNM, Takegami T (1999) Molecular characterization of the Japanese encephalitis virus representative immunotype strain JaGAr01. Virus Res 59:101–112PubMedCrossRefGoogle Scholar
  21. 21.
    McMinn PC (1997) The molecular basis of virulence of the encephalitogenic flaviviruses. J Gen Virol 78:2711–2722PubMedGoogle Scholar
  22. 22.
    Nam JH, Chung YJ, Ban SJ, Kim EJ, Park YK, Cho HW (1996) Envelope gene sequence variation among Japanese encephalitis viruses isolated in Korea. Acta Virol 40:303–309PubMedGoogle Scholar
  23. 23.
    Nam JH, Chae SL, Won SY, Kim EJ, Yoon KS, Kim BI, Jeong YS, Cho HW (2001) Short report: genetic heterogeneity of Japanese encephalitis virus assessed via analysis of the full-length genome sequence of a Korean isolate. Am J Trop Med Hyg 65:388–392PubMedGoogle Scholar
  24. 24.
    Nam JH, Chae SL, Park SH, Jeong YS, Joo MS, Kang CY, Cho HW (2002) High level of sequence variation in the 3′ noncoding region of Japanese encephalitis viruses isolated in Korea. Virus Genes 24:21–27PubMedCrossRefGoogle Scholar
  25. 25.
    Ni H, Barrett AD (1995) Nucleotide and deduced amino acid sequence of the structural protein genes of Japanese encephalitis viruses from different geographical locations. J Gen Virol 76:401–407PubMedCrossRefGoogle Scholar
  26. 26.
    Ni H, Chang GJ, Xie H, Trent DW, Barrett AD (1995) Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14. J Gen Virol 76:409–413PubMedCrossRefGoogle Scholar
  27. 27.
    Paranjpe S, Banerjee K (1996) Phylogenetic analysis of the envelope gene of Japanese encephalitis virus. Virus Res 42:107–117PubMedCrossRefGoogle Scholar
  28. 28.
    Parida M, Dash PK, Tripathi NK, Ambuj S, Saxena P, Agarwal S, Sahni AK, Singh SP, Rathi AK, Bhargava R, Abhyankar A, Verma SK, Rao PV, Sekhar K (2006) Japanese encephalitis outbreak, India, 2005. Emerg Infect Dis 12:1427–1430PubMedCrossRefGoogle Scholar
  29. 29.
    Rey FA, Hein FX, Mandl C, Kunz C, Harrison SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375:291–298PubMedCrossRefGoogle Scholar
  30. 30.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  31. 31.
    Saxena V, Dhole TN (2008) Preventive strategies for frequent outbreaks of Japanese encephalitis in Northern India. J Biosci 33:505–514PubMedCrossRefGoogle Scholar
  32. 32.
    Shimojima M, Nagao Y, Shimoda H, Tamaru S, Yamanaka T, Matsumura T, Kondo T, Maeda K (2011) Full genome sequence and virulence analyses of the recent equine isolate of Japanese encephalitis virus. J Vet Med Sci 73:813–816PubMedCrossRefGoogle Scholar
  33. 33.
    Solomon T, Ni H, Beasley DW, Ekkelenkamp M, Cardosa MJ, Barrett AD (2003) Origin and evolution of Japanese encephalitis virus in southeast Asia. J Virol 77:3091–3098PubMedCrossRefGoogle Scholar
  34. 34.
    Sumiyoshi H, Mori C, Fuke I, Morita K, Kuhara S, Kondou J, Kikuchi Y, Nagamatu H, Igarashi A (1987) Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161:497–510PubMedCrossRefGoogle Scholar
  35. 35.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  36. 36.
    Umenai T, Krzysko R, Bektimivov TA, Assaad FA (1985) Japanese encephalitis: current worldwide status. Bull World Health Organ 63:625–631PubMedGoogle Scholar
  37. 37.
    Vashist S, Anantpadma M, Sharma H, Vrati S (2009) La protein binds the predicted loop structures in the 3′ non-coding region of Japanese encephalitis virus genome: role in virus replication. J Gen Virol 90:1343–1352PubMedCrossRefGoogle Scholar
  38. 38.
    Westaway EG, Blok J (1997) Taxonomy and evolutionary relationships of flaviviruses. In: Gubler DJ, Kuno G (eds) Dengue and Dengue Haemorrhagic Fever. CAB International, Wallingford, pp 147–173Google Scholar
  39. 39.
    Williams DT, Wang LF, Daniels PW, Mackenzie JS (2000) Molecular characterization of the first Australian isolate of Japanese encephalitis virus, the FU strain. J Gen Virol 81:2471–2480PubMedGoogle Scholar
  40. 40.
    Yamaguchi Y, Nukui Y, Tajima S, Nerome R, Kato F, Watanabe H, Takasaki T, Kurane I (2011) An amino acid substitution (V3I) in the Japanese encephalitis virus NS4A protein increases its virulence in mice, but not its growth rate in vitro. J Gen Virol 92:1601–1606PubMedCrossRefGoogle Scholar
  41. 41.
    Yamashita T, Unno H, Mori Y, Tani H, Moriishi K, Takamizawa A, Agoh M, Tsukihara T, Matsuura Y (2008) Crystal structure of the catalytic domain of Japanese encephalitis virus NS3 helicase/nucleoside triphosphatase at a resolution of 1.8 A. Virology 373:426–436PubMedCrossRefGoogle Scholar
  42. 42.
    Yang DK, Kim BH, Kweon CH, Kwon JH, Lim SI, Han HR (2004) Molecular characterization of full-length genome of Japanese encephalitis virus (KV1899) isolated from pigs in Korea. J Vet Sci 5:197–205PubMedGoogle Scholar
  43. 43.
    You S, Padmanabhan R (1999) A novel in vitro replication system for dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA. J Biol Chem 274:33714–33722PubMedCrossRefGoogle Scholar
  44. 44.
    Yun SI, Kim SY, Choi WY, Nam JH, Ju YR, Park KY, Cho HW, Lee YM (2003) Molecular characterization of the full-length genome of the Japanese encephalitis viral strain K87P39. Virus Res 96:129–140PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Harisankar Singha
    • 1
  • Baldev R. Gulati
    • 1
  • Prabhat Kumar
    • 1
  • Birendra K. Singh
    • 1
  • Nitin Virmani
    • 1
  • Raj K. Singh
    • 1
  1. 1.Equine Health UnitNational Research Centre on EquinesHisarIndia

Personalised recommendations