Archives of Virology

, Volume 158, Issue 1, pp 283–289 | Cite as

Discovery of a novel circular single-stranded DNA virus from porcine faeces

  • Alyssa Sikorski
  • Gerardo R. Argüello-Astorga
  • Anisha Dayaram
  • Renwick C. J. Dobson
  • Arvind Varsani
Annotated Sequence Record

Abstract

A large number of novel single-stranded DNA (ssDNA) viruses have been characterised from various environmental sources in the last 5 years. The bulk of these have been from faecal sources, and faecal sampling is an ideal non-invasive pathogen sampling method. We characterised a novel ssDNA from a porcine faecal sample from Cass Basin of the South Island of New Zealand. The novel viral genome has two large open reading frames (ORFs), which are bidirectionally transcribed and separated by intergenic regions. The largest ORF has some degree of similarity (<30 %) to the putative capsid protein of chimpanzee stool-associated circular ssDNA virus (ChiSCV) and pig stool-associated single-stranded DNA virus (PigSCV), whereas the second-largest ORF has high similarity to the putative replication-associated protein (Rep) of ChiSCV (~50 %) and bovine stool-associated circular DNA virus (BoSCV; ~30 %). Based on genome architecture, location of putative stem-loop like elements, and maximum-likelihood phylogenetic analysis of the gene encoding the Rep protein, the novel isolate belongs to the same family of ssDNA viruses as ChiSCV and BoSCV.

Notes

Acknowledgments

This study was partially supported by an early career grant from the University of Canterbury (New Zealand) and a University of Cape Town (South Africa) block grant awarded to AV.

Supplementary material

705_2012_1470_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. 1.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. 2.
    Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552PubMedCrossRefGoogle Scholar
  3. 3.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201PubMedCrossRefGoogle Scholar
  4. 4.
    Asahina AY, Lu Y, Wu C, Fujioka RS, Loh PC (2009) Potential biosentinels of human waste in marine coastal waters: bioaccumulation of human noroviruses and enteroviruses from sewage-polluted waters by indigenous mollusks. J Virol Methods 158:46–50PubMedCrossRefGoogle Scholar
  5. 5.
    Bitton G (2002) Entamoeba Histolytica/Entamoeba Dispar. Wiley, New York, pp 1136–1146Google Scholar
  6. 6.
    Blinkova O, Victoria J, Li Y, Keele BF, Sanz C, Ndjango JB, Peeters M, Travis D, Lonsdorf EV, Wilson ML, Pusey AE, Hahn BH, Delwart EL (2010) Novel circular DNA viruses in stool samples of wild-living chimpanzees. J Gen Virol 91:74–86PubMedCrossRefGoogle Scholar
  7. 7.
    Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13PubMedCrossRefGoogle Scholar
  8. 8.
    Dayaram A, Opong A, Jaschke A, Hadfield J, Baschiera M, Dobson RC, Offei SK, Shepherd DN, Martin DP, Varsani A (2012) Molecular characterisation of a novel cassava associated circular ssDNA virus. Virus Res 166:130–135PubMedCrossRefGoogle Scholar
  9. 9.
    Delwart E, Li L (2012) Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes. Virus Res 164:114–121PubMedCrossRefGoogle Scholar
  10. 10.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  11. 11.
    Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Current protocols in bioinformatics/editoral board, Andreas D Baxevanis [et al.] Chapter 5:Unit 5 6Google Scholar
  12. 12.
    Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491PubMedCrossRefGoogle Scholar
  13. 13.
    Ge X, Li J, Peng C, Wu L, Yang X, Wu Y, Zhang Y, Shi Z (2011) Genetic diversity of novel circular ssDNA viruses in bats in China. J Gen Virol 92:2646–2653PubMedCrossRefGoogle Scholar
  14. 14.
    Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321PubMedCrossRefGoogle Scholar
  15. 15.
    Ilyina TV, Koonin EV (1992) Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20:3279PubMedCrossRefGoogle Scholar
  16. 16.
    Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37:D387–D392PubMedCrossRefGoogle Scholar
  17. 17.
    Kim HK, Park SJ, Nguyen VG, Song DS, Moon HJ, Kang BK, Park BK (2012) Identification of a novel single-stranded, circular DNA virus from bovine stool. J Gen Virol 93:635–639PubMedCrossRefGoogle Scholar
  18. 18.
    Koonin EV, Ilyina TV (1992) Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. J Gen Virol 73:2763PubMedCrossRefGoogle Scholar
  19. 19.
    Li L, Kapoor A, Slikas B, Bamidele OS, Wang C, Shaukat S, Masroor MA, Wilson ML, Ndjango JB, Peeters M, Gross-Camp ND, Muller MN, Hahn BH, Wolfe ND, Triki H, Bartkus J, Zaidi SZ, Delwart E (2010) Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol 84:1674–1682PubMedCrossRefGoogle Scholar
  20. 20.
    Li L, Shan T, Soji OB, Alam MM, Kunz TH, Zaidi SZ, Delwart E (2011) Possible cross-species transmission of circoviruses and cycloviruses among farm animals. J Gen Virol 92:768–772PubMedCrossRefGoogle Scholar
  21. 21.
    Ng TFF, Willner DL, Lim YW, Schmieder R, Chau B, Nilsson C, Anthony S, Ruan Y, Rohwer F, Breitbart M (2011) Broad surveys of DNA viral diversity obtained through viral metagenomics of mosquitoes. PLoS ONE 6:e20579PubMedCrossRefGoogle Scholar
  22. 22.
    Phan TG, Kapusinszky B, Wang C, Rose RK, Lipton HL, Delwart EL (2011) The fecal viral flora of wild rodents. PLoS Pathog 7:e1002218PubMedCrossRefGoogle Scholar
  23. 23.
    Piasecki T, Kurenbach B, Chrzastek K, Bednarek K, Kraberger S, Martin DP, Varsani A (2012) Molecular characterisation of an avihepadnavirus isolated from Psittacula krameri (ring-necked parrot). Arch Virol 157:585–590PubMedCrossRefGoogle Scholar
  24. 24.
    Rosario K, Breitbart M (2011) Exploring the viral world through metagenomics. Curr Opin Virol 1:289–297PubMedCrossRefGoogle Scholar
  25. 25.
    Rosario K, Marinov M, Stainton D, Kraberger S, Wiltshire EJ, Collings DA, Walters M, Martin DP, Breitbart M, Varsani A (2011) Dragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata: Anisoptera). J Gen Virol 92:1302–1308PubMedCrossRefGoogle Scholar
  26. 26.
    Rosario K, Duffy S, Breitbart M (2012) A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol. doi:10.1007/s00705-012-1391-y
  27. 27.
    Sachsenröder J, Twardziok S, Hammerl JA, Janczyk P, Wrede P, Hertwig S, Johne R (2012) Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing. PLoS ONE 7:e34631PubMedCrossRefGoogle Scholar
  28. 28.
    Shan T, Li L, Simmonds P, Wang C, Moeser A, Delwart E (2011) The fecal virome of pigs on a high-density farm. J Virol 85:11697–11708PubMedCrossRefGoogle Scholar
  29. 29.
    Shepherd DN, Martin DP, Lefeuvre P, Monjane AL, Owor BE, Rybicki EP, Varsani A (2008) A protocol for the rapid isolation of full geminivirus genomes from dried plant tissue. J Virol Methods 149:97–102PubMedCrossRefGoogle Scholar
  30. 30.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  31. 31.
    van den Brand JM, van Leeuwen M, Schapendonk CM, Simon JH, Haagmans BL, Osterhaus AD, Smits SL (2012) Metagenomic analysis of the viral flora of pine marten and European badger feces. J Virol 86:2360–2365PubMedCrossRefGoogle Scholar
  32. 32.
    Varsani A, Regnard GL, Bragg R, Hitzeroth II, Rybicki EP (2011) Global genetic diversity and geographical and host-species distribution of beak and feather disease virus isolates. J Gen Virol 92:752–767PubMedCrossRefGoogle Scholar
  33. 33.
    Woolhouse M, Gaunt E (2007) Ecological origins of novel human pathogens. Crit Rev Microbiol 33:231–242PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Alyssa Sikorski
    • 1
  • Gerardo R. Argüello-Astorga
    • 2
  • Anisha Dayaram
    • 1
  • Renwick C. J. Dobson
    • 1
    • 3
  • Arvind Varsani
    • 1
    • 3
    • 4
  1. 1.School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.División de Biología MolecularInstituto Potosino de Investigación Científica y TecnológicaSan Luis PotosíMexico
  3. 3.Biomolecular Interaction CentreUniversity of CanterburyChristchurchNew Zealand
  4. 4.Electron Microscope UnitUniversity of Cape TownCape TownSouth Africa

Personalised recommendations