Archives of Virology

, Volume 157, Issue 12, pp 2431–2435 | Cite as

Bacteriophage vB_EcoM_FV3: a new member of “rV5-like viruses”

  • Lidija Truncaite
  • Eugenijus Šimoliūnas
  • Aurelija Zajančkauskaite
  • Laura Kaliniene
  • Roma Mankevičiūte
  • Juozas Staniulis
  • Vytautas Klausa
  • Rolandas Meškys
Brief Report


A proposed new genus of the family Myoviridae, “rV5-like viruses”, includes two lytic bacteriophages: Escherichia coli O157: H7-specific bacteriophage rV5 and Salmonella phage PVP-SE1. Here, we present basic properties and genomic characterization of a novel rV5-like phage, vB_EcoM_FV3, which infects E. coli K-12-derived laboratory strains and replicates at high temperature (up to 47 °C). The 136,947-bp genome of vB_EcoM_FV3 contains 218 open reading frames and encodes 5 tRNAs. The genomic content and organization of vB_EcoM_FV3 is more similar to that of rV5 than to PVP-SE1, but all three phages share similar morphological characteristics and form a homogeneous phage group.


Escherichia coli rV5-like viruses Bacteriophage vB_EcoM_FV3 High temperature 



We thank Dr. Ken Kreuzer, Dr. Victor Krylov and Dr. Lindsay W. Black for E. coli strains. This work was supported in part by the Lithuanian State Science and Studies Foundation (Grant No. N-07005) and was also funded by a grant (No. MIP-76/2010) from the Research Council of Lithuania.

Supplementary material

705_2012_1449_MOESM1_ESM.doc (286 kb)
Supplementary material 1 Table 1S. A list of bacteriophage vB_EcoM_FV3 putative genes with predicted functions. (DOC 285 kb)
705_2012_1449_MOESM2_ESM.tif (4.6 mb)
Supplementary material 2 Fig. 1S. Functional genomic map of bacteriophage vB_EcoM_FV3. Putative genes with predicted coding functions are represented as arrows. The colour code for the online version of the article is as follows: yellow—DNA replication, recombination, repair and packaging; brown—transcription, translation, nucleotide metabolism; blue—virion structure; green—chaperones/assembly; purple—lysis, host or phage interactions; grey—ORFs of unknown function; red—unique FV3 ORFs of unknown function; black—tRNA. (TIFF 4748 kb)


  1. 1.
    Hatfull GF (2008) Bacteriophage genomics. Curr Opin Microbiol 11:447–453. doi: 10.1016/j.mib.2008.09.004 PubMedCrossRefGoogle Scholar
  2. 2.
    Lavigne R, Seto D, Mahadevan P, Ackermann H-W, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414. doi: 10.1016/j.resmic.2008.03.005 PubMedCrossRefGoogle Scholar
  3. 3.
    Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackerman HW, Kropinski AM (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224. doi: 10.1186/1471-2180-9-224 PubMedCrossRefGoogle Scholar
  4. 4.
    Santos SB, Kropinski AM, Ceyssens P-J, Ackermann H-W, Villegas A, Lavigne R, Krylov VN, Carvalho CM, Ferreira EC, Azeredo J (2011) Genomic and proteomic characterization of the broad host range Salmonella phage PVP-SE1: the creation of a new phage genus. J Virol 85:11265–11273. doi: 10.1128/JVI.01769-10 PubMedCrossRefGoogle Scholar
  5. 5.
    Santos SB, Fernandes E, Carvalho CM, Sillankorva S, Krylov VN, Pleteneva EA, Shaburova OV, Nicolau A, Ferreira EC, Azeredo J (2010) Selection and characterization of a multivalent Salmonella phage and its production in a nonpathogenic Escherichia coli strain. Appl Environ Microbiol 76:7338–7342. doi: 10.1128/AEM.00922-10 PubMedCrossRefGoogle Scholar
  6. 6.
    Niu YD, Johnson RP, Xu Y, McAllister TA, Sharma R, Louie M, Stanford K (2009) Host range and lytic capability of four bacteriophages against bovine and clinical human isolates of Shiga toxin-producing Escherichia coli O157:H7. J Appl Microbiol 107:646–656. doi: 10.1111/j.1365-2672.2009.04231.x PubMedCrossRefGoogle Scholar
  7. 7.
    Stanford K, McAllister TA, Niu YD, Stephens TP, Mazzocco A, Waddell TE, Johnson RP (2010) Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. J Food Prot 73:1304–1312PubMedGoogle Scholar
  8. 8.
    Carlson K, Miller E (1994) Experiments in T4 genetics. In: Karam JD (ed) Molecular biology of bacteriophage T4. ASM Press, Washington DC, pp 419–483Google Scholar
  9. 9.
    Carver T, Berriman M, Tivey A, Patel C, Böhme U, Barrell BG, Parkhill J, Rajandream M-A (2008) Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24:2672–2676. doi: 10.1093/bioinformatics/btn529 PubMedCrossRefGoogle Scholar
  10. 10.
    Veluchamy A, Mary S, Acharya V, Mehta P, Deva T, Krishnaswamy S (2009) HNHDb: A database on pattern based classification of HNH domains reveals functional relevance of sequence patterns and domain associations. Bioinformation 4:80–83PubMedCrossRefGoogle Scholar
  11. 11.
    Scholl D, Rogers S, Adhya S, Merril CR (2001) Bacteriophage K1–5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol 75:2509–2515. doi: 10.1128/JVI.75.6.2509-2515.2001 PubMedCrossRefGoogle Scholar
  12. 12.
    Yoichi M, Abe M, Miyanaga K, Unno H, Tanji Y (2005) Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J Biotechnol 115:101–107. doi: 10.1016/j.jbiotec.2004.08.003 Google Scholar
  13. 13.
    Morita M, Fischer CR, Mizoguchi K, Yoichi M, Oda M, Tanji Y, Unno H (2002) Amino acid alterations in Gp38 of host range mutants of PP01 and evidence for their infection of an ompC null mutant of Escherichia coli O157:H7. FEMS Microbiol Lett 216:243–248PubMedCrossRefGoogle Scholar
  14. 14.
    Bollback JP, Huelsenbeck JP (2009) Parallel genetic evolution within and between bacteriophage species of varying degrees of divergence. Genetics 181:225–234. doi: 10.1534/genetics.107.085225 PubMedCrossRefGoogle Scholar
  15. 15.
    Brown CJ, Zhao L, Evans KJ, Ally D, Stancik AD (2010) Positive selection at high temperature reduces gene transcription in the bacteriophage ϕX174. BMC Evol Biol 10:378. doi: 10.1186/1471-2148-10-378 PubMedCrossRefGoogle Scholar
  16. 16.
    Tenaillon O, Rodrίguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS (2012) The molecular diversity of adaptive convergence. Science 335:457–461. doi: 10.1126/science.1212986 PubMedCrossRefGoogle Scholar
  17. 17.
    Friman V-P, Hiltunen T, Jalasvuori M, Lindstedt C, Laanto E, Örmälä AM, Laakso J, Mappes J, Bamford JK (2011) High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs. PLoS One 6:e17651. doi: 10.1371/journal.pone.0017651 PubMedCrossRefGoogle Scholar
  18. 18.
    Yue W-F, Du M, Zhu M-J (2012) High temperature in combination with UV irradiation enhances horizontal transfer of stx2 gene from E. coli O157:H7 to non-pathogenic E. coli. PLoS One 7:e31308. doi: 10.1371/journal.pone.0031308 PubMedCrossRefGoogle Scholar
  19. 19.
    Wiberg JS, Mowrey-McKee MF, Stevens EJ (1988) Induction of the heat shock regulon of Escherichia coli markedly increases production of bacterial viruses at high temperatures. J Virol 62:234–245PubMedGoogle Scholar
  20. 20.
    Pitout JDD (2012) Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol 3:9. doi: 10.3389/fmicb.2012.00009 PubMedGoogle Scholar
  21. 21.
    Kudva IT, Jelacic S, Tarr PI, Youderian P, Hovde CJ (1999) Biocontrol of Escherichia coli O157:H7 with O157-specific bacteriophages. Appl Environ Microbiol 65:3767–3773PubMedGoogle Scholar
  22. 22.
    Chibani-Chenoufi S, Sidoti J, Bruttin A, Kutter E, Sarker S, Brüssow H (2004) In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob Agents Chemother 48:2558–2569. doi: 10.1128/AAC.48.7.2558-2569.2004 CrossRefGoogle Scholar
  23. 23.
    Villegas A, She Y-M, Kropinski AM, Lingohr EJ, Mazzocco A, Ojha S, Waddell TE, Ackermann H-W, Moyles DM, Ahmed R, Johnson RP (2009) The genome and proteome of a virulent Escherichia coli O157:H7 bacteriophage closely resembling Salmonella phage Felix O1. Virol J 6:41. doi: 10.1186/1743-422×-6-41 PubMedCrossRefGoogle Scholar
  24. 24.
    Kutter EM, Skutt-Kakaria K, Blasdel B, El-Shibiny A, Castano A, Bryan D, Kropinski AM, Villegas A, Ackermann H-W, Toribio AL, Pickard D, Anany H, Callaway T, Brabban AD (2011) Characterization of a ViI-like phage specific to Escherichia coli O157:H7. Virol J 8:430. doi: 10.1186/1743-422X-8-430 PubMedCrossRefGoogle Scholar
  25. 25.
    Liao WC, Ng WV, Lin IH, Syu WJ, Liu TT, Chang CH (2011) T4-Like genome organization of the Escherichia coli O157:H7 lytic phage AR1J Virol 85:6567–6578. doi: 10.1128/JVI.02378-10 Google Scholar
  26. 26.
    Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86–156PubMedCrossRefGoogle Scholar
  27. 27.
    Molineux I (2006) The T7 group. In: Calendar R (ed) The bacteriophages. Oxford University Press: New York, pp 277–301Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lidija Truncaite
    • 1
  • Eugenijus Šimoliūnas
    • 1
  • Aurelija Zajančkauskaite
    • 1
  • Laura Kaliniene
    • 1
  • Roma Mankevičiūte
    • 1
  • Juozas Staniulis
    • 2
  • Vytautas Klausa
    • 1
  • Rolandas Meškys
    • 1
  1. 1.Department of Molecular Microbiology and BiotechnologyInstitute of Biochemistry of Vilnius UniversityVilniusLithuania
  2. 2.Laboratory of Plant VirusesInstitute of Botany of the Nature Research CentreVilniusLithuania

Personalised recommendations