Advertisement

Archives of Virology

, Volume 157, Issue 8, pp 1605–1609 | Cite as

Antigen capture ELISA system for henipaviruses using polyclonal antibodies obtained by DNA immunization

  • Yoshihiro KakuEmail author
  • Akira Noguchi
  • Glenn A. Marsh
  • Jennifer A. Barr
  • Akiko Okutani
  • Kozue Hotta
  • Boldbaatar Bazartseren
  • Christopher C. Broder
  • Akio Yamada
  • Satoshi Inoue
  • Lin-Fa Wang
Brief Report

Abstract

A novel antigen-capture sandwich ELISA system targeting the glycoproteins of the henipaviruses Nipah virus (NiV) and Hendra virus (HeV) was developed. Utilizing purified polyclonal antibodies derived from NiV glycoprotein-encoding DNA-immunized rabbits, we established a system that can detect the native antigenic structures of the henipavirus surface glycoproteins using simplified and inexpensive methods. The lowest detection limit against live viruses was achieved for NiV Bangladesh strain, 2.5 × 104 TCID50. Considering the recent emergence of genetic variants of henipaviruses and the resultant problems that arise for PCR-based detection, this system could serve as an alternative rapid diagnostic and detection assay.

Keywords

Vesicular Stomatitis Virus Envelope Glycoprotein Live Virus ELISA System Nipah Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Dr. K. Komase (Department of Virology III, National Institute of Infectious Diseases) for providing inactivated measles virus antigens. A part of this study was supported by a grant for Research on Emerging and Reemerging Infectious Diseases (H20-Shinkou-Ippan-006) from the Ministry of Health, Labor and Welfare of Japan.

References

  1. 1.
    Bossart KN, Broder CC (2006) Developments towards effective treatments for Nipah and Hendra virus infection. Expert Rev Anti Infect Ther 4:43–55PubMedCrossRefGoogle Scholar
  2. 2.
    Chiang C-F, Lo MK, Rota PA, Spiropoulou CF, Rollin PE (2010) Use of monoclonal antibodies against Hendra and Nipah viruses in an antigen capture ELISA. Virol J 7:115PubMedCrossRefGoogle Scholar
  3. 3.
    Daniels P, Ksiazek T, Eaton BT (2001) Laboratory diagnosis of Nipah and Hendra virus infections. Microbes Infect 3:289–295PubMedCrossRefGoogle Scholar
  4. 4.
    Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, Ipsen A, Kruppa T, Müller MA, Kalko EKV, Adu-Sarkodie Y, Oppong S, Drosten C (2009) Henipavirus RNA in African bats. PLoS ONE 4:e6367PubMedCrossRefGoogle Scholar
  5. 5.
    Eaton BT, Broder CC, Middleton D, Wang LF (2006) Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol 4:23–35PubMedCrossRefGoogle Scholar
  6. 6.
    Feldman KS, Foord A, Heine HG, Smith IL, Boyd V, Marsh GA, Wood JLN, Cunningham AA, Wang LF (2009) Design and evaluation of consensus PCR assays for henipaviruses. J Virol Methods 161:52–57PubMedCrossRefGoogle Scholar
  7. 7.
    Kaku Y (2009) Nipah virus infection–zoonosis among wild animals, domestic animals and humans. J Disaster Res 4:309–314Google Scholar
  8. 8.
    Kaku Y, Noguchi A, Marsh GA, McEachern JA, Okutani A, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A, Inoue S, Wang LF (2009) A neutralization test for specific detection of Nipah virus antibodies using pseudotyped vesicular stomatitis virus expressing green fluorescent protein. J Virol Methods 160:7–13PubMedCrossRefGoogle Scholar
  9. 9.
    Lam S-K (2003) Nipah virus–a potential agent of bioterrorism? Antiviral Res 57:113–119PubMedCrossRefGoogle Scholar
  10. 10.
    Li Y, Wang J, Hickey AC, Zhang Y, Wu Y, Zhang H, Yuan J, Han Z, McEachern J, Broder CC, Wang LF, Shi Z (2008) Antibodies to Nipah or Nipah-like viruses in bats, China. Emerg Infect Dis 14:1974–1976PubMedCrossRefGoogle Scholar
  11. 11.
    Lo MK, Lowe L, Hummel KB, Sazzad HM, Gurley ES, Hossain MJ, Luby SP, Miller DM, Comer JA, Rollin PE, Bellini WJ, Rota PA (2012) Characterization of Nipah virus from outbreaks in Bangladesh, 2008-2010. Emerg Infect Dis 18:248–255PubMedCrossRefGoogle Scholar
  12. 12.
    Maisner A, Neufeld J, Weingartl H (2009) Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro. Thromb Haemost 102:1014–1023PubMedGoogle Scholar
  13. 13.
    Marsh GA, Todd S, Foord A, Hansson E, Davies K, Wright L, Morrissy C, Halpin K, Middleton D, Field HE, Daniels P, Wang LF (2010) Genome sequence conservation of Hendra virus isolates during spillover to horses, Australia. Emerg Infect Dis 16:1767–1769PubMedGoogle Scholar
  14. 14.
    Patch JR, Crameri G, Wang L-F, Eaton BT, Broder CC (2007) Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein. Virol J 4:1PubMedCrossRefGoogle Scholar
  15. 15.
    Smith I, Broos A, de Jong C, Zeddeman A, Smith C, Smith G, Moore F, Barr J, Crameri G, Marsh G, Tachedjian M, Yu M, Kung YH, Wang L-F, Field H (2011) Identifying hendra virus diversity in pteropid bats. PLoS ONE 6:e25275PubMedCrossRefGoogle Scholar
  16. 16.
    Smith IL, Halpin K, Warrilow D, Smith GA (2001) Development of a fluorogenic RT-PCR assay (TaqMan) for the detection of Hendra virus. J Virol Methods 98:33–40PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yoshihiro Kaku
    • 1
    Email author
  • Akira Noguchi
    • 1
  • Glenn A. Marsh
    • 2
  • Jennifer A. Barr
    • 2
  • Akiko Okutani
    • 1
  • Kozue Hotta
    • 1
  • Boldbaatar Bazartseren
    • 1
  • Christopher C. Broder
    • 3
  • Akio Yamada
    • 1
  • Satoshi Inoue
    • 1
  • Lin-Fa Wang
    • 2
  1. 1.Department of Veterinary ScienceNational Institute of Infectious DiseasesTokyoJapan
  2. 2.Australian Animal Health LaboratoryCSIRO Livestock IndustriesGeelongAustralia
  3. 3.Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaUSA

Personalised recommendations