Archives of Virology

, Volume 157, Issue 8, pp 1423–1440 | Cite as

The contribution of rodent models to the pathological assessment of flaviviral infections of the central nervous system

  • David C. ClarkEmail author
  • Aaron C. Brault
  • Elizabeth Hunsperger
Brief Review


Members of the genus Flavivirus are responsible for a spectrum of important neurological syndromes in humans and animals. Rodent models have been used extensively to model flavivirus neurological disease, to discover host-pathogen interactions that influence disease outcome, and as surrogates to determine the efficacy and safety of vaccines and therapeutics. In this review, we discuss the current understanding of flavivirus neuroinvasive disease and outline the host, viral and experimental factors that influence the outcome and reliability of virus infection of small-animal models.


Encephalitis West Nile Virus Japanese Encephalitis Virus Japanese Encephalitis West Nile Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agamanolis DP, Leslie MJ, Caveny EA, Guarner J, Shieh WJ, Zaki SR (2003) Neuropathological findings in West Nile virus encephalitis: a case report. Ann Neurol 54:547–551PubMedCrossRefGoogle Scholar
  2. 2.
    Andersen AA, Hanson RP (1974) Influence of sex and age on natural resistance to St. Louis encephalitis virus infection in mice. Infect Immun 9:1123–1125PubMedGoogle Scholar
  3. 3.
    Anderson SG (1954) Murray Valley encephalitis and Australian X disease. J Hyg 52:447–468CrossRefGoogle Scholar
  4. 4.
    Andrews DM, Matthews VB, Sammels LM, Carrello AC, McMinn PC (1999) The severity of Murray valley encephalitis in mice is linked to neutrophil infiltration and inducible nitric oxide synthase activity in the central nervous system. J Virol 73:8781–8790PubMedGoogle Scholar
  5. 5.
    Anthony D, Dempster R, Fearn S, Clements J, Wells G, Perry VH, Walker K (1998) CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood–brain barrier breakdown. Curr Biol 8:923–926PubMedCrossRefGoogle Scholar
  6. 6.
    Armah HB, Wang G, Omalu BI, Tesh RB, Gyure KA, Chute DJ, Smith RD, Dulai P, Vinters HV, Kleinschmidt-DeMasters BK, Wiley CA (2007) Systemic distribution of West Nile virus infection: postmortem immunohistochemical study of six cases. Brain Pathol 17:354–362PubMedCrossRefGoogle Scholar
  7. 7.
    Avirutnan P, Hauhart RE, Somnuke P, Blom AM, Diamond MS, Atkinson JP (2011) Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J ImmunolGoogle Scholar
  8. 8.
    Bai F, Kong KF, Dai J, Qian F, Zhang L, Brown CR, Fikrig E, Montgomery RR (2010) A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J Infect Dis 202:1804–1812PubMedCrossRefGoogle Scholar
  9. 9.
    Bakonyi T, Hubalek Z, Rudolf I, Nowotny N (2005) Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg Infect Dis 11:225–231PubMedCrossRefGoogle Scholar
  10. 10.
    Balakrishnan A, Mishra AC (2008) Immune response during acute Chandipura viral infection in experimentally infected susceptible mice. Virol J 5:121PubMedCrossRefGoogle Scholar
  11. 11.
    Barkhash AV, Perelygin AA, Babenko VN, Myasnikova NG, Pilipenko PI, Romaschenko AG, Voevoda MI, Brinton MA (2010) Variability in the 2’-5’-oligoadenylate synthetase gene cluster is associated with human predisposition to tick-borne encephalitis virus-induced disease. J Infect Dis 202:1813–1818PubMedCrossRefGoogle Scholar
  12. 12.
    Beasley DW, Li L, Suderman MT, Barrett AD (2002) Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296:17–23PubMedCrossRefGoogle Scholar
  13. 13.
    Beasley DW, Davis CT, Whiteman M, Granwehr B, Kinney RM, Barrett AD (2004) Molecular determinants of virulence of West Nile virus in North America. Arch Virol Suppl 35–41Google Scholar
  14. 14.
    Bode AV, Sejvar JJ, Pape WJ, Campbell GL, Marfin AA (2006) West Nile virus disease: a descriptive study of 228 patients hospitalized in a 4-county region of Colorado in 2003. Clin Infect Dis 42:1234–1240PubMedCrossRefGoogle Scholar
  15. 15.
    Bondre VP, Jadi RS, Mishra AC, Yergolkar PN, Arankalle VA (2007) West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol 88:875–884PubMedCrossRefGoogle Scholar
  16. 16.
    Bosco-Lauth A, Mason G, Bowen R (2011) Pathogenesis of Japanese encephalitis virus infection in a golden hamster model and evaluation of flavivirus cross-protective immunity. Am J Trop Med Hyg 84:727–732PubMedCrossRefGoogle Scholar
  17. 17.
    Botha EM, Markotter W, Wolfaardt M, Paweska JT, Swanepoel R, Palacios G, Nel LH, Venter M (2008) Genetic determinants of virulence in pathogenic lineage 2 West Nile virus strains. Emerg Infect Dis 14:222–230PubMedCrossRefGoogle Scholar
  18. 18.
    Brault AC, Huang CY, Langevin SA, Kinney RM, Bowen RA, Ramey WN, Panella NA, Holmes EC, Powers AM, Miller BR (2007) A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet 39:1162–1166PubMedCrossRefGoogle Scholar
  19. 19.
    Brien JD, Uhrlaub JL, Hirsch A, Wiley CA, Nikolich-Zugich J (2009) Key role of T cell defects in age-related vulnerability to West Nile virus. J Exp Med 206:2735–2745PubMedCrossRefGoogle Scholar
  20. 20.
    Brinker KR, Monath TP (1980) The acute disease. In: Monath TP (ed) St Louis encephalitis. American Public Health Association, Washington, DC, pp 503–534Google Scholar
  21. 21.
    Brinton MA, Perelygin AA (2003) Genetic resistance to flaviviruses. Adv Virus Res 60:43–85PubMedCrossRefGoogle Scholar
  22. 22.
    Calisher CH, Karabatsos N, Dalrymple JM, Shope RE, Porterfield JS, Westaway EG, Brandt WE (1989) Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol 70(Pt 1):37–43PubMedCrossRefGoogle Scholar
  23. 23.
    Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ (2002) West Nile virus. Lancet Infect Dis 2:519–529PubMedCrossRefGoogle Scholar
  24. 24.
    Cavrini F GP, Longo G, Pierro AM, Rossini G, Bonilauri P, Pasetto A, Girardis M, Dottori M, Landini M P, Sambri V (2009) Usutu virus infection in a patient who underwent orthotropic live transplantation, Italy, August–September 2009. Eurosurveillance 14Google Scholar
  25. 25.
    Cerna F, Mehrad B, Luby JP, Burns D, Fleckenstein JL (1999) St. Louis encephalitis and the substantia nigra: MR imaging evaluation. AJNR Am J Neuroradiol 20:1281–1283PubMedGoogle Scholar
  26. 26.
    Chandler LJ, Parsons R, Randle Y (2001) Multiple genotypes of St. Louis encephalitis virus (Flaviviridae: Flavivirus) circulate in Harris County, Texas. Am J Trop Med Hyg 64:12–19PubMedGoogle Scholar
  27. 27.
    Chen CJ, Ou YC, Lin SY, Raung SL, Liao SL, Lai CY, Chen SY, Chen JH (2010) Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J Gen Virol 91:1028–1037PubMedCrossRefGoogle Scholar
  28. 28.
    Chen WH, Kao YF, Liu JS (2005) An increase of blood anti-beta2-glycoprotein I antibody in Japanese encephalitis associated with cerebral ischemia. Blood Coagul Fibrinolysis Int J Haemost Thromb 16:55–59CrossRefGoogle Scholar
  29. 29.
    Cho HJ, Kim S, Kwak SE, Kang TC, Kim HS, Kwon HJ, Kim YW, Kim YS, Choi EK, Song MJ (2009) Age-dependent pathogenesis of murine gammaherpesvirus 68 infection of the central nervous system. Mol Cells 27:105–111PubMedCrossRefGoogle Scholar
  30. 30.
    Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS (2008) Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82:10349–10358PubMedCrossRefGoogle Scholar
  31. 31.
    Davis CW, Nguyen HY, Hanna SL, Sanchez MD, Doms RW, Pierson TC (2006) West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80:1290–1301PubMedCrossRefGoogle Scholar
  32. 32.
    Davis LE, DeBiasi R, Goade DE, Haaland KY, Harrington JA, Harnar JB, Pergam SA, King MK, DeMasters BK, Tyler KL (2006) West Nile virus neuroinvasive disease. Ann Neurol 60:286–300PubMedCrossRefGoogle Scholar
  33. 33.
    Day JF, Curtis GA (1989) Influence of rainfall on Culex nigripalpus (Diptera: Culicidae) blood-feeding behavior in Indian River Country, Florida. Ann Entomol Soc Am 82:32–37Google Scholar
  34. 34.
    De Groot AS, Saint-Aubin C, Bosma A, Sbai H, Rayner J, Martin W (2001) Rapid determination of HLA B*07 ligands from the West Nile virus NY99 genome. Emerg Infect Dis 7:706–713PubMedGoogle Scholar
  35. 35.
    Depoortere E, Kavle J, Keus K, Zeller H, Murri S, Legros D (2004) Outbreak of West Nile virus causing severe neurological involvement in children, Nuba Mountains, Sudan, 2002. Trop Med Int Health 9:730–736PubMedCrossRefGoogle Scholar
  36. 36.
    Desai A, Ravi V, Guru SC, Shankar SK, Kaliaperumal VG, Chandramuki A, Gourie-Devi M (1994) Detection of autoantibodies to neural antigens in the CSF of Japanese encephalitis patients and correlation of findings with the outcome. J Neurol Sci 122:109–116PubMedCrossRefGoogle Scholar
  37. 37.
    Desai A, Shankar SK, Ravi V, Chandramuki A, Gourie-Devi M (1995) Japanese encephalitis virus antigen in the human brain and its topographic distribution. Acta Neuropathol 89:368–373PubMedCrossRefGoogle Scholar
  38. 38.
    Dickerson RB, Newton JR, Hansen JE (1952) Diagnosis and immediate prognosis of Japanese B encephalitis; observations based on more than 200 patients with detailed analysis of 65 serologically confirmed cases. Am J Med 12:277–288PubMedCrossRefGoogle Scholar
  39. 39.
    Dropulic B, Masters CL (1990) Entry of neurotropic arboviruses into the central nervous system: an in vitro study using mouse brain endothelium. J Infect Dis 161:685–691PubMedCrossRefGoogle Scholar
  40. 40.
    Dumpis U, Crook D, Oksi J (1999) Tick-borne encephalitis. Clin Infect Dis 28:882–890PubMedCrossRefGoogle Scholar
  41. 41.
    Ek CJ, Dziegielewska KM, Stolp H, Saunders NR (2006) Functional effectiveness of the blood-brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). J Comp Neurol 496:13–26PubMedCrossRefGoogle Scholar
  42. 42.
    Eldadah AH, Nathanson N, Sarsitis R (1967) Pathogenesis of West Nile Virus encephalitis in mice and rats. 1. Influence of age and species on mortality and infection. Am J Epidemiol 86:765–775PubMedGoogle Scholar
  43. 43.
    Engle MJ, Diamond MS (2003) Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice. J Virol 77:12941–12949PubMedCrossRefGoogle Scholar
  44. 44.
    Evans IA, Hueston L, Doggett SL (2009) Murray Valley encephalitis virus. N S W Public Health Bull 20:195–196PubMedCrossRefGoogle Scholar
  45. 45.
    Firth AE, Atkins JF (2009) A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1’ may derive from ribosomal frameshifting. Virol J 6:14PubMedCrossRefGoogle Scholar
  46. 46.
    Firth AE, Blitvich BJ, Wills NM, Miller CL, Atkins JF (2010) Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses. Virology 399:153–166PubMedCrossRefGoogle Scholar
  47. 47.
    French EL (1952) Murray Valley encephalitis: isolation and characterisation of the aetiological agent. Med J Aust 1:100–103PubMedGoogle Scholar
  48. 48.
    French EL, Anderson SG, Price AVG, Rhodes FA (1957) Murray Valley encephalitis in New Guinea I. Isolation of Murray Valley encephalitis virus from the brain of a fatal case of encephalitis occurring in a Papuan native. Am J Trop Med Hyg 6Google Scholar
  49. 49.
    Gardner JJ, Reyes MG (1980) Pathology. In: Monath TP (ed) St Louis encephalitis. American Public Health Association, Washington, DC, pp 551–569Google Scholar
  50. 50.
    Gelpi E, Preusser M, Laggner U, Garzuly F, Holzmann H, Heinz FX, Budka H (2006) Inflammatory response in human tick-borne encephalitis: analysis of postmortem brain tissue. J Neurovirol 12:322–327PubMedCrossRefGoogle Scholar
  51. 51.
    German AC, Myint KS, Mai NT, Pomeroy I, Phu NH, Tzartos J, Winter P, Collett J, Farrar J, Barrett A, Kipar A, Esiri MM, Solomon T (2006) A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Trans R Soc Trop Med Hyg 100:1135–1145PubMedCrossRefGoogle Scholar
  52. 52.
    Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM (2005) Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202:1087–1098PubMedCrossRefGoogle Scholar
  53. 53.
    Glass WG, McDermott DH, Lim JK, Lekhong S, Yu SF, Frank WA, Pape J, Cheshier RC, Murphy PM (2006) CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 203:35–40PubMedCrossRefGoogle Scholar
  54. 54.
    Granwehr BP, Lillibridge KM, Higgs S, Mason PW, Aronson JF, Campbell GA, Barrett AD (2004) West Nile virus: where are we now? Lancet Infect Dis 4:547–556PubMedCrossRefGoogle Scholar
  55. 55.
    Grossberg SE, Scherer WF (1966) The effect of host age, virus dose and route of inoculation on inapparent infection in mice with Japanese encephalitis virus. Proc Soc Exp Biol Med 123:118–124PubMedGoogle Scholar
  56. 56.
    Guarner J, Shieh WJ, Hunter S, Paddock CD, Morken T, Campbell GL, Marfin AA, Zaki SR (2004) Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis. Hum Pathol 35:983–990PubMedCrossRefGoogle Scholar
  57. 57.
    Hase T, Dubois DR, Summers PL (1990) Comparative study of mouse brains infected with Japanese encephalitis virus by intracerebral or intraperitoneal inoculation. Int J Exp Pathol 71:857–869PubMedGoogle Scholar
  58. 58.
    Heinz FX, Stiasny K, Allison SL (2004) The entry machinery of flaviviruses. Arch Virol Suppl 133–137Google Scholar
  59. 59.
    Hirsch MS, Zisman B, Allison AC (1970) Macrophages and age-dependent resistance to Herpes simplex virus in mice. J Immunol 104:1160–1165PubMedGoogle Scholar
  60. 60.
    Hollidge BS, González-Scarano F, Soldan SS (2010) Arboviral encephalitides: transmission, emergence, and pathogenesis. J Neuroimmune Pharmacol 5:428–442PubMedCrossRefGoogle Scholar
  61. 61.
    Hovanessian AG, Justesen J (2007) The human 2’-5’oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2’-5’ instead of 3’-5’ phosphodiester bond formation. Biochimie 89:779–788PubMedCrossRefGoogle Scholar
  62. 62.
    Hunsperger EA, Roehrig JT (2006) Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice. J Neurovirol 12:129–139PubMedCrossRefGoogle Scholar
  63. 63.
    Johnson RT, Burke DS, Elwell M, Leake CJ, Nisalak A, Hoke CH, Lorsomrudee W (1985) Japanese encephalitis: immunocytochemical studies of viral antigen and inflammatory cells in fatal cases. Ann Neurol 18:567–573PubMedCrossRefGoogle Scholar
  64. 64.
    Jones SC, Morris J, Hill G, Alderman M, Ratard RC (2002) St. Louis encephalitis outbreak in Louisiana in 2001. J La State Med Soc 154:303–306PubMedGoogle Scholar
  65. 65.
    Justesen J, Hartmann R, Kjeldgaard NO (2000) Gene structure and function of the 2’-5’-oligoadenylate synthetase family. Cell Mol Life Sci 57:1593–1612PubMedCrossRefGoogle Scholar
  66. 66.
    Kim S, Li L, McMurtrey CP, Hildebrand WH, Weidanz JA, Gillanders WE, Diamond MS, Hansen TH (2010) Single-chain HLA-A2 MHC trimers that incorporate an immundominant peptide elicit protective T cell immunity against lethal West Nile virus infection. J Immunol 184:4423–4430PubMedCrossRefGoogle Scholar
  67. 67.
    Kimoto T, Yamada T, Ueba N, Kunita N, Kawai A (1968) Laboratory diagnosis of Japanese encephalitis. Comparison of the fluorescent antibody technique with virus isolation and serologic tests. Biken J 11:157–168PubMedGoogle Scholar
  68. 68.
    Kindberg E, Mickiene A, Ax C, Akerlind B, Vene S, Lindquist L, Lundkvist A, Svensson L (2008) A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis 197:266–269PubMedCrossRefGoogle Scholar
  69. 69.
    Kindberg E, Vene S, Mickiene A, Lundkvist A, Lindquist L, Svensson L (2011) A functional Toll-like receptor 3 gene (TLR3) may be a risk factor for tick-borne encephalitis virus (TBEV) infection. J Infect Dis 203:523–528PubMedCrossRefGoogle Scholar
  70. 70.
    Kleinschmidt-DeMasters BK, Marder BA, Levi ME, Laird SP, McNutt JT, Escott EJ, Everson GT, Tyler KL (2004) Naturally acquired West Nile virus encephalomyelitis in transplant recipients: clinical, laboratory, diagnostic, and neuropathological features. Arch Neurol 61:1210–1220PubMedCrossRefGoogle Scholar
  71. 71.
    Kong KF, Delroux K, Wang X, Qian F, Arjona A, Malawista SE, Fikrig E, Montgomery RR (2008) Dysregulation of TLR3 Impairs the Innate Immune Response to West Nile Virus in the Elderly. J Virol 82:7613–7623PubMedCrossRefGoogle Scholar
  72. 72.
    Kreil TR, Eibl MM (1996) Nitric oxide and viral infection: NO antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo. Virology 219:304–306PubMedCrossRefGoogle Scholar
  73. 73.
    Krisztalovics K, Ferenczi E, Molnar Z, Csohan A, Ban E, Zoldi V, Kaszas K (2008) West Nile virus infections in Hungary, August-September 2008. Eurosurveillance 13:pii: 19030Google Scholar
  74. 74.
    Kunz C (2003) TBE vaccination and the Austrian experience. Vaccine 21(Suppl 1):S50–S55PubMedCrossRefGoogle Scholar
  75. 75.
    Kutasi O, Bakonyi T, Lecollinet S, Biksi I, Ferenczi E, Bahuon C, Sardi S, Zientara S, Szenci O (2011) Equine encephalomyelitis outbreak caused by a genetic lineage 2 West Nile Virus in Hungary. J Vet Intern Med 25(3):586–591Google Scholar
  76. 76.
    Lanteri MC, Kaidarova Z, Peterson T, Cate S, Custer B, Wu S, Agapova M, Law JP, Bielawny T, Plummer F, Tobler LH, Loeb M, Busch MP, Bramson J, Luo M, Norris PJ (2011) Association between HLA Class I and Class II alleles and the outcome of West Nile virus infection: an exploratory study. PLoS One 6:e22948PubMedCrossRefGoogle Scholar
  77. 77.
    Latham PS, Sepelak SB, Pifat DY, Smith JF (1991) Role of hepatocytes and Kupffer cells in age-dependent murine hepatitis caused by a phlebovirus, Punta Toro. J Med Virol 33:10–18PubMedCrossRefGoogle Scholar
  78. 78.
    Liao CL, Lin YL, Wang JJ, Huang YL, Yeh CT, Ma SH, Chen LK (1997) Effect of enforced expression of human bcl-2 on Japanese encephalitis virus-induced apoptosis in cultured cells. J Virol 71:5963–5971PubMedGoogle Scholar
  79. 79.
    Licon Luna RM, Lee E, Mullbacher A, Blanden RV, Langman R, Lobigs M (2002) Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice. J Virol 76:3202–3211PubMedCrossRefGoogle Scholar
  80. 80.
    Lim JK, Lisco A, McDermott DH, Huynh L, Ward JM, Johnson B, Johnson H, Pape J, Foster GA, Krysztof D, Follmann D, Stramer SL, Margolis LB, Murphy PM (2009) Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog 5:e1000321PubMedCrossRefGoogle Scholar
  81. 81.
    Lim JK, McDermott DH, Lisco A, Foster GA, Krysztof D, Follmann D, Stramer SL, Murphy PM (2009) CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection but not for viral transmission. J Infect Dis 201:178–185CrossRefGoogle Scholar
  82. 82.
    Lim JK, McDermott DH, Lisco A, Foster GA, Krysztof D, Follmann D, Stramer SL, Murphy PM (2010) CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection but not for viral transmission. J Infect Dis 201:178–185PubMedCrossRefGoogle Scholar
  83. 83.
    Lim JK, Obara CJ, Rivollier A, Pletnev AG, Kelsall BL, Murphy PM (2011) Chemokine receptor Ccr2 is critical for monocyte accumulation and survival in West Nile virus encephalitis. J Immunol 186:471–478PubMedCrossRefGoogle Scholar
  84. 84.
    Lindquist L, Vapalahti O (2008) Tick-borne encephalitis. Lancet 371:1861–1871PubMedCrossRefGoogle Scholar
  85. 85.
    Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139PubMedCrossRefGoogle Scholar
  86. 86.
    Liou ML, Hsu CY (1998) Japanese encephalitis virus is transported across the cerebral blood vessels by endocytosis in mouse brain. Cell Tissue Res 293:389–394PubMedCrossRefGoogle Scholar
  87. 87.
    Luby JP, Sulkin SE, Sanford JP (1969) The epidemiology of St. Louis encephalitis: a review. Annu Rev Med 20:329–350PubMedCrossRefGoogle Scholar
  88. 88.
    Lucas M, Mashimo T, Frenkiel MP, Simon-Chazottes D, Montagutelli X, Ceccaldi PE, Guenet JL, Despres P (2003) Infection of mouse neurones by West Nile virus is modulated by the interferon-inducible 2’-5’ oligoadenylate synthetase 1b protein. Immunol Cell Biol 81:230–236PubMedCrossRefGoogle Scholar
  89. 89.
    Lumsden LL (1958) St. Louis encephalitis in 1933; observations on epidemiological features. Public Health Rep 73:340–353PubMedCrossRefGoogle Scholar
  90. 90.
    Lustig S, Jackson AC, Hahn CS, Griffin DE, Strauss EG, Strauss JH (1988) Molecular basis of Sindbis virus neurovirulence in mice. J Virol 62:2329–2336PubMedGoogle Scholar
  91. 91.
    Lynch CJ, Hughes TP (1936) The inheritance of susceptibility to yellow fever encephalitis in mice. Genetics 21:104–112PubMedGoogle Scholar
  92. 92.
    Mackenzie JS, Broom AK (1995) Australian X disease, Murray Valley encephalitis and the French connection. [Review] [49 refs]. Vet Microbiol 46:79–90PubMedCrossRefGoogle Scholar
  93. 93.
    Mackenzie JS, Williams DT (2009) The zoonotic flaviviruses of Southern, South-Eastern and Eastern Asia, and Australasia: the potential for emergent viruses. Zoonoses Public Health 56:338–356PubMedCrossRefGoogle Scholar
  94. 94.
    Martina BE, Koraka P, van den Doel P, Rimmelzwaan GF, Haagmans BL, Osterhaus AD (2008) DC-SIGN enhances infection of cells with glycosylated West Nile virus in vitro and virus replication in human dendritic cells induces production of IFN-alpha and TNF-alpha. Virus ResGoogle Scholar
  95. 95.
    Mateo R, Xiao SY, Guzman H, Lei H, Da Rosa AP, Tesh RB (2006) Effects of immunosuppression on West Nile virus infection in hamsters. Am J Trop Med Hyg 75:356–362PubMedGoogle Scholar
  96. 96.
    Matsuo S, Morita K, Bundo-Morita K, Igarashi A (1994) Differences in susceptibility to peripheral infection with Japanese encephalitis virus among inbred strains of mouse. Uirusu 44:205–215PubMedCrossRefGoogle Scholar
  97. 97.
    May FJ, Davis CT, Tesh RB, Barrett AD (2010) Phylogeography of West Nile virus: from the cradle of evolution in Africa to Eurasia, Australia and the Americas. J VirolGoogle Scholar
  98. 98.
    McMinn PC, Dalgarno L, Weir RC (1996) A comparison of the spread of Murray Valley encephalitis viruses of high or low neuroinvasiveness in the tissues of Swiss mice after peripheral inoculation. Virology 220:414–423PubMedCrossRefGoogle Scholar
  99. 99.
    Meehan PJ, Wells DL, Paul W, Buff E, Lewis A, Muth D, Hopkins R, Karabatsos N, Tsai TF (2000) Epidemiological features of and public health response to a St. Louis encephalitis epidemic in Florida, 1990-1. Epidemiol Infect 125:181–188PubMedCrossRefGoogle Scholar
  100. 100.
    Mehlhop E, Whitby K, Oliphant T, Marri A, Engle M, Diamond MS (2005) Complement activation is required for induction of a protective antibody response against West Nile virus infection. J Virol 79:7466–7477PubMedCrossRefGoogle Scholar
  101. 101.
    Melian EB, Hinzman E, Nagasaki T, Firth AE, Wills NM, Nouwens AS, Blitvich BJ, Leung J, Funk A, Atkins JF, Hall R, Khromykh AA (2010) NS1’ of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol 84:1641–1647PubMedCrossRefGoogle Scholar
  102. 102.
    Misra UK, Kalita J (2010) Overview: Japanese encephalitis. Prog Neurobiol 91:108–120PubMedCrossRefGoogle Scholar
  103. 103.
    Miura K, Goto N, Suzuki H, Fujisaki Y (1988) Strain difference of mouse in susceptibility to Japanese encephalitis virus infection. Jikken Dobutsu Exp Anim 37:365–373Google Scholar
  104. 104.
    Miyake M (1964) The pathology of Japanese encephalitis. a review. Bull World Health Organ 30:153–160PubMedGoogle Scholar
  105. 105.
    Monath TP (1980) Epidemiology. In: Monath TP (ed) St Louis encephalitis. American Public Health Association, Washington, DC, pp 239–312Google Scholar
  106. 106.
    Monath TP, Cropp CB, Harrison AK (1983) Mode of entry of a neurotropic arbovirus into the central nervous system. Reinvestigation of an old controversy. Lab Invest J Tech Methods Pathol 48:399–410Google Scholar
  107. 107.
    Monath TP, Tsai TF (1987) St. Louis encephalitis: lessons from the last decade. Am J Trop Med Hyg 37:40S–59SPubMedGoogle Scholar
  108. 108.
    Moos T, Mollgard K (1993) Cerebrovascular permeability to azo dyes and plasma proteins in rodents of different ages. Neuropathol Appl Neurobiol 19:120–127PubMedCrossRefGoogle Scholar
  109. 109.
    Morahan G, Balmer L, Monley D (2008) Establishment of “The Gene Mine”: a resource for rapid identification of complex trait genes. Mamm Genome 19:390–393PubMedCrossRefGoogle Scholar
  110. 110.
    Morrey JD, Day CW, Julander JG, Olsen AL, Sidwell RW, Cheney CD, Blatt LM (2004) Modeling hamsters for evaluating West Nile virus therapies. Antiviral Res 63:41–50PubMedCrossRefGoogle Scholar
  111. 111.
    Morrey JD, Olsen AL, Siddharthan V, Motter NE, Wang H, Taro BS, Chen D, Ruffner D, Hall JO (2008) Increased blood brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents. J Gen Virol 89:467–473PubMedCrossRefGoogle Scholar
  112. 112.
    Morrey JD, Siddharthan V, Wang H, Hall JO, Motter NE, Skinner RD, Skirpstunas RT (2010) Neurological suppression of diaphragm electromyographs in hamsters infected with West Nile virus. J NeurovirolGoogle Scholar
  113. 113.
    Mukherji AK, Biswas SK (1976) Histopathological studies of brains (and other viscera) from cases of JE virus encephalitis during 1973 epidemic at Bankura. Indian J Med Res 64:1143–1149PubMedGoogle Scholar
  114. 114.
    Mullbacher A, Regner M, Wang Y, Lee E, Lobigs M, Simon M (2004) Can we really learn from model pathogens? Trends Immunol 25:524–528PubMedCrossRefGoogle Scholar
  115. 115.
    Murata R, Eshita Y, Maeda A, Maeda J, Akita S, Tanaka T, Yoshii K, Kariwa H, Umemura T, Takashima I (2010) Glycosylation of the West Nile virus envelope protein increases in vivo and in vitro viral multiplication in birds. Am J Trop Med Hyg 82:696–704PubMedCrossRefGoogle Scholar
  116. 116.
    Murray K, Baraniuk S, Resnick M, Arafat R, Kilborn C, Cain K, Shallenberger R, York TL, Martinez D, Hellums JS, Hellums D, Malkoff M, Elgawley N, McNeely W, Khuwaja SA, Tesh RB (2006) Risk factors for encephalitis and death from West Nile virus infection. Epidemiol Infect 134:1325–1332PubMedCrossRefGoogle Scholar
  117. 117.
    Myint KS, Raengsakulrach B, Young GD, Gettayacamin M, Ferguson LM, Innis BL, Hoke CH Jr, Vaughn DW (1999) Production of lethal infection that resembles fatal human disease by intranasal inoculation of macaques with Japanese encephalitis virus. Am J Trop Med Hyg 60:338–342PubMedGoogle Scholar
  118. 118.
    Nazmi A, Dutta K, Das S, Basu A (2011) Japanese encephalitis virus-infected macrophages induce neuronal death. J Neuroimmune Pharmacol 6:420–433PubMedCrossRefGoogle Scholar
  119. 119.
    Odelola HA, Oduye OO (1977) West Nile virus infection of adult mice by oral route. Arch Virol 54:251–253PubMedCrossRefGoogle Scholar
  120. 120.
    Ogata A, Nagashima K, Hall WW, Ichikawa M, Kimura-Kuroda J, Yasui K (1991) Japanese encephalitis virus neurotropism is dependent on the degree of neuronal maturity. J Virol 65:880–886PubMedGoogle Scholar
  121. 121.
    Paddock CD, Nicholson WL, Bhatnagar J, Goldsmith CS, Greer PW, Hayes EB, Risko JA, Henderson C, Blackmore CG, Lanciotti RS, Campbell GL, Zaki SR (2006) Fatal hemorrhagic fever caused by West Nile virus in the United States. Clin Infect Dis 42:1527–1535PubMedCrossRefGoogle Scholar
  122. 122.
    Palmer RJ, Finley KH (1956) Sequelae of encephalitis: report of a study of a clinical follow-up in California. Calif Med 84:98–100PubMedGoogle Scholar
  123. 123.
    Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM, Shaw AC (2009) Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30:325–333PubMedCrossRefGoogle Scholar
  124. 124.
    Papa A, Danis K, Baka A, Bakas A, Dougas G, Lytras T, Theocharopoulos G, Chrysagis D, Vassiliadou E, Kamaria F, Liona A, Mellou K, Saroglou G, Panagiotopoulos T (2010) Ongoing outbreak of West Nile virus infections in humans in Greece, July-August 2010. Eurosurveillance 15(34)pii: 19644Google Scholar
  125. 125.
    Papa A (2011) Genetic characterization of West Nile Virus lineage 2, Greece, 2010. Emerg Infect Dis 17(5):920–922Google Scholar
  126. 126.
    Pecorari M LG, Gennari W, Grottola A, Sabbatini AM, Tagliazucchi S, Savini G, Monaco F, Simone M L, Lelli R, Rumpianesi F (2009) First human case of Usutu virus neuroinvasive infection, Italy, August–September 2009. Eurosurveillance 14Google Scholar
  127. 127.
    Perelygin AA, Scherbik SV, Zhulin IB, Stockman BM, Li Y, Brinton MA (2002) Positional cloning of the murine flavivirus resistance gene. Proc Nat Acad Sci USA 99:9322–9327PubMedCrossRefGoogle Scholar
  128. 128.
    Phillpotts RJ, Jones LD, Lukaszewski RA, Lawrie C, Brooks TJ (2003) Antibody and interleukin-12 treatment in murine models of encephalitogenic flavivirus (St. Louis encephalitis, tick-borne encephalitis) and alphavirus (Venezuelan equine encephalitis) infection. J Interf Cytokine Res 23:47–50CrossRefGoogle Scholar
  129. 129.
    Piazza P, McMurtrey CP, Lelic A, Cook RL, Hess R, Yablonsky E, Borowski L, Loeb MB, Bramson JL, Hildebrand WH, Rinaldo CR (2010) Surface phenotype and functionality of WNV specific T cells differ with age and disease severity. PLoS One 5:e15343PubMedCrossRefGoogle Scholar
  130. 130.
    Pijlman GP, Funk A, Kondratieva N, Leung J, Torres S, van der Aa L, Liu WJ, Palmenberg AC, Shi PY, Hall RA, Khromykh AA (2008) A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe 4:579–591PubMedCrossRefGoogle Scholar
  131. 131.
    Pradhan S, Gupta RK, Singh MB, Mathur A (2001) Biphasic illness pattern due to early relapse in Japanese-B virus encephalitis. J Neurol Sci 183:13–18PubMedCrossRefGoogle Scholar
  132. 132.
    Prandovszky E, Horvath S, Gellert L, Kovacs SK, Janka Z, Toldi J, Shukla D, Valyi-Nagy T (2008) Nectin-1 (HveC) is expressed at high levels in neural subtypes that regulate radial migration of cortical and cerebellar neurons of the developing human and murine brain. J Neurovirol 14:164–172PubMedCrossRefGoogle Scholar
  133. 133.
    Qian F, Wang X, Zhang L, Lin A, Zhao H, Fikrig E, Montgomery RR (2011) Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis 203:1415–1424PubMedCrossRefGoogle Scholar
  134. 134.
    Reisen WK, Milby MM, Presser SB, Hardy JL (1992) Ecology of mosquitoes and St. Louis encephalitis virus in the Los Angeles Basin of California, 1987–1990. J Med Entomol 29:582–598PubMedGoogle Scholar
  135. 135.
    Reisen WK, Meyer RP, Presser SB, Hardy JL (1993) Effect of temperature on the transmission of western equine encephalomyelitis and St. Louis encephalitis viruses by Culex tarsalis (Diptera: Culicidae). J Med Entomol 30:151–160PubMedGoogle Scholar
  136. 136.
    Reisen WK, Hardy JL, Lothrop HD (1995) Landscape ecology of arboviruses in southern California: patterns in the epizootic dissemination of western equine encephalomyelitis and St. Louis encephalitis viruses in Coachella Valley, 1991–1992. J Med Entomol 32:267–275PubMedGoogle Scholar
  137. 137.
    Reisen WK (2003) Epidemiology of St. Louis encephalitis virus. Adv Virus Res 61:139–183PubMedCrossRefGoogle Scholar
  138. 138.
    Reisen WK, Thiemann T, Barker CM, Lu H, Carroll B, Fang Y, Lothrop HD (2010) Effects of warm winter temperature on the abundance and gonotrophic activity of Culex (Diptera: Culicidae) in California. J Med Entomol 47:230–237PubMedCrossRefGoogle Scholar
  139. 139.
    Reyes MG, Gardner JJ, Poland JD, Monath TP (1981) St Louis encephalitis. Quantitative histologic and immunofluorescent studies. Arch Neurol 38:329–334PubMedCrossRefGoogle Scholar
  140. 140.
    Ruzek D, Salat J, Palus M, Gritsun TS, Gould EA, Dykova I, Skallova A, Jelinek J, Kopecky J, Grubhoffer L (2009) CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology 384:1–6PubMedCrossRefGoogle Scholar
  141. 141.
    Samuel MA, Diamond MS (2005) Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol 79:13350–13361PubMedCrossRefGoogle Scholar
  142. 142.
    Samuel MA, Wang H, Siddharthan V, Morrey JD, Diamond MS (2007) Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Nat Acad Sci USA 104:17140–17145PubMedCrossRefGoogle Scholar
  143. 143.
    Samuel MA, Wang H, Siddharthan V, Morrey JD, Diamond MS (2007) Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad Sci USAGoogle Scholar
  144. 144.
    Sangster MY, Heliams DB, MacKenzie JS, Shellam GR (1993) Genetic studies of flavivirus resistance in inbred strains derived from wild mice: evidence for a new resistance allele at the flavivirus resistance locus (Flv). J Virol 67:340–347PubMedGoogle Scholar
  145. 145.
    Sangster MY, Urosevic N, Mansfield JP, Mackenzie JS, Shellam GR (1994) Mapping the Flv locus controlling resistance to flaviviruses on mouse chromosome 5. J Virol 68:448–452PubMedGoogle Scholar
  146. 146.
    Saunders NR, Habgood MD, Dziegielewska KM (1999) Barrier mechanisms in the brain, II. Immature brain. Clin Exp Pharmacol Physiol 26:85–91PubMedCrossRefGoogle Scholar
  147. 147.
    Sbrana E, Tonry JH, Xiao SY, da Rosa AP, Higgs S, Tesh RB (2005) Oral transmission of West Nile virus in a hamster model. Am J Trop Med Hyg 72:325–329PubMedGoogle Scholar
  148. 148.
    Scherbik SV, Kluetzman K, Perelygin AA, Brinton MA (2007) Knock-in of the Oas1b(r) allele into a flavivirus-induced disease susceptible mouse generates the resistant phenotype. Virology 368:232–237PubMedCrossRefGoogle Scholar
  149. 149.
    Schneider BS, McGee CE, Jordan JM, Stevenson HL, Soong L, Higgs S (2007) Prior exposure to uninfected mosquitoes enhances mortality in naturally-transmitted West Nile virus infection. PLoS One 2:e1171PubMedCrossRefGoogle Scholar
  150. 150.
    Schneider BS, Higgs S (2008) The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans R Soc Trop Med Hyg 102:400–408PubMedCrossRefGoogle Scholar
  151. 151.
    Schuh AJ, Tesh RB, Barrett AD (2010) Genetic characterization of Japanese encephalitis virus genotype II strains isolated from 1951 to 1978. J Gen Virol 92:516–527PubMedCrossRefGoogle Scholar
  152. 152.
    Sejvar JJ, Haddad MB, Tierney BC, Campbell GL, Marfin AA, Van Gerpen JA, Fleischauer A, Leis AA, Stokic DS, Petersen LR (2003) Neurologic manifestations and outcome of West Nile virus infection. J Am Med Assoc (JAMA) 290:511–515CrossRefGoogle Scholar
  153. 153.
    Sejvar JJ, Bode AV, Marfin AA, Campbell GL, Ewing D, Mazowiecki M, Pavot PV, Schmitt J, Pape J, Biggerstaff BJ, Petersen LR (2005) West Nile virus-associated flaccid paralysis. Emerg Infect Dis 11:1021–1027PubMedCrossRefGoogle Scholar
  154. 154.
    Shankar SK, Rao TV, Mruthyunjayanna BP, Gourie Devi M, Deshpande DH (1983) Autopsy study of brains during an epidemic of Japanese encephalitis in Karnataka. Indian J Med Res 78:431–440PubMedGoogle Scholar
  155. 155.
    Shirato K, Miyoshi H, Goto A, Ako Y, Ueki T, Kariwa H, Takashima I (2004) Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol 85:3637–3645PubMedCrossRefGoogle Scholar
  156. 156.
    Shrestha B, Diamond MS (2004) Role of CD8+ T cells in control of West Nile virus infection. J Virol 78:8312–8321PubMedCrossRefGoogle Scholar
  157. 157.
    Shrestha B, Wang T, Samuel MA, Whitby K, Craft J, Fikrig E, Diamond MS (2006) Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol 80:5338–5348PubMedCrossRefGoogle Scholar
  158. 158.
    Shrestha B, Zhang B, Purtha WE, Klein RS, Diamond MS (2008) Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. J Virol 82:8956–8964PubMedCrossRefGoogle Scholar
  159. 159.
    Siddharthan V, Wang H, Motter NE, Hall JO, Skinner RD, Skirpstunas RT, Morrey JD (2009) Persistent West Nile virus associated with a neurological sequela in hamsters identified by motor unit number estimation. J Virol 83:4251–4261PubMedCrossRefGoogle Scholar
  160. 160.
    Sirbu A, Ceianu C, Panculescu-Gatej R, Vazquez A, Tenorio A, Rebreanu R, Niedrig M, Nicolescu G, Pistol A (2011) Outbreak of West Nile virus infection in humans, Romania, July to October 2010. Eurosurveillance 16(2)pii: 19762Google Scholar
  161. 161.
    Sitati EM, Diamond MS (2006) CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol 80:12060–12069PubMedCrossRefGoogle Scholar
  162. 162.
    Smithburn KC (1940) A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg 20:471–492Google Scholar
  163. 163.
    Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT (2000) Japanese encephalitis. J Neurol Neurosurg Psychiatry 68:405–415PubMedCrossRefGoogle Scholar
  164. 164.
    Solomon T, Vaughn DW (2002) Pathogenesis and clinical features of Japanese encephalitis and West Nile virus infections. Curr Top Microbiol Immunol 267:171–194PubMedCrossRefGoogle Scholar
  165. 165.
    Solomon T, Winter PM (2004) Neurovirulence and host factors in flavivirus encephalitis—evidence from clinical epidemiology. Arch Virol Suppl 161–170Google Scholar
  166. 166.
    Styer LM, Bernard KA, Kramer LD (2006) Enhanced early West Nile virus infection in young chickens infected by mosquito bite: effect of viral dose. Am J Trop Med Hyg 75:337–345PubMedGoogle Scholar
  167. 167.
    Styer LM, Lim PY, Louie KL, Albright RG, Kramer LD, Bernard KA (2010) Mosquito saliva causes enhancement of West Nile virus infection in mice. J VirolGoogle Scholar
  168. 168.
    Styer LM, Lim PY, Louie KL, Albright RG, Kramer LD, Bernard KA (2011) Mosquito saliva causes enhancement of West Nile virus infection in mice. J Virol 85:1517–1527PubMedCrossRefGoogle Scholar
  169. 169.
    Suss J (2008) Tick-borne encephalitis in Europe and beyond–the epidemiological situation as of 2007. Eurosurveillance 13Google Scholar
  170. 170.
    Swarup V, Das S, Ghosh S, Basu A (2007) Tumor necrosis factor receptor-1-induced neuronal death by TRADD contributes to the pathogenesis of Japanese encephalitis. J Neurochem 103:771–783PubMedCrossRefGoogle Scholar
  171. 171.
    Swarup V, Ghosh J, Das S, Basu A (2008) Tumor necrosis factor receptor-associated death domain mediated neuronal death contributes to the glial activation and subsequent neuroinflammation in Japanese encephalitis. Neurochem Int 52:1310–1321PubMedCrossRefGoogle Scholar
  172. 172.
    Tesh RB, Arroyo J, Travassos da Rosa AP, Guzman H, Xiao SY, Monath TP (2002) Efficacy of killed virus vaccine, live attenuated chimeric virus vaccine, and passive immunization for prevention of West Nile virus encephalitis in hamster model. Emerg Infect Dis 8:1392–1397PubMedCrossRefGoogle Scholar
  173. 173.
    Tesh RB, Siirin M, Guzman H, Travassos da Rosa AP, Wu X, Duan T, Lei H, Nunes MR, Xiao SY (2005) Persistent West Nile virus infection in the golden hamster: studies on its mechanism and possible implications for other flavivirus infections. J Infect Dis 192:287–295PubMedCrossRefGoogle Scholar
  174. 174.
    Thangamani S, Higgs S, Ziegler S, Vanlandingham D, Tesh R, Wikel S (2010) Host immune response to mosquito-transmitted chikungunya virus differs from that elicited by needle inoculated virus. PLoS One 5(8):e12137Google Scholar
  175. 175.
    Tohmi M, Tsuda N, Zheng Y, Mizuno M, Sotoyama H, Shibuya M, Kawamura M, Kakita A, Takahashi H, Nawa H (2007) The cellular and behavioral consequences of interleukin-1 alpha penetration through the blood-brain barrier of neonatal rats: a critical period for efficacy. Neuroscience 150:234–250PubMedCrossRefGoogle Scholar
  176. 176.
    Tonry JH, Xiao SY, Siirin M, Chen H, da Rosa AP, Tesh RB (2005) Persistent shedding of West Nile virus in urine of experimentally infected hamsters. Am J Trop Med Hyg 72:320–324PubMedGoogle Scholar
  177. 177.
    Trgovcich J, Aronson JF, Eldridge JC, Johnston RE (1999) TNFalpha, interferon, and stress response induction as a function of age-related susceptibility to fatal Sindbis virus infection of mice. Virology 263:339–348PubMedCrossRefGoogle Scholar
  178. 178.
    Tsai TF (1988) St. Louis encephalitic virus. In: Monath TP (ed) The arboviruses: epidemiology and ecology. CRC Press, Boca Raton, pp 113–141Google Scholar
  179. 179.
    Tsai TF (2000) New initiatives for the control of Japanese encephalitis by vaccination: minutes of a WHO/CVI meeting, Bangkok, Thailand, 13-15 October 1998. Vaccine 18(Suppl 2):1–25PubMedCrossRefGoogle Scholar
  180. 180.
    Uno M, Takano T, Yamano T, Shimada M (1997) Age-dependent susceptibility in mumps-associated hydrocephalus: neuropathologic features and brain barriers. Acta Neuropathol 94:207–215PubMedCrossRefGoogle Scholar
  181. 181.
    Urosevic N, Mansfield JP, Mackenzie JS, Shellam GR (1995) Low resolution mapping around the flavivirus resistance locus (Flv) on mouse chromosome 5. Mamm Genome 6:454–458PubMedCrossRefGoogle Scholar
  182. 182.
    van den Hurk AF, Ritchie SA, Mackenzie JS (2009) Ecology and geographical expansion of Japanese encephalitis virus. Annu Rev Entomol 54:17–35PubMedCrossRefGoogle Scholar
  183. 183.
    Vernon PS, Griffin DE (2005) Characterization of an in vitro model of alphavirus infection of immature and mature neurons. J Virol 79:3438–3447PubMedCrossRefGoogle Scholar
  184. 184.
    Wang H, Siddharthan V, Hall JO, Morrey JD (2009) West Nile virus preferentially transports along motor neuron axons after sciatic nerve injection of hamsters. J Neuroviro 1–7Google Scholar
  185. 185.
    Wang H, Siddharthan V, Hall JO, Morrey JD (2011) Autonomic nervous dysfunction in hamsters infected with West Nile virus. PLoS One 6:e19575PubMedCrossRefGoogle Scholar
  186. 186.
    Wang L, Fu S, Zhang H, Ye X, Yu D, Deng Z, Yuan J, Zhai Y, Li M, Lv Z, Chen W, Jiang H, Gao X, Cao Y, Wang H, Tang Q, Liang G (2010) Identification and isolation of Genotype-I Japanese encephalitis virus from encephalitis patients. Virol J 7:345PubMedCrossRefGoogle Scholar
  187. 187.
    Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373PubMedCrossRefGoogle Scholar
  188. 188.
    Wasay M, Diaz-Arrastia R, Suss RA, Kojan S, Haq A, Burns D, Van Ness P (2000) St Louis encephalitis: a review of 11 cases in a 1995 Dallas, Tex, epidemic. Arch Neurol 57:114–118PubMedCrossRefGoogle Scholar
  189. 189.
    Watson JT, Pertel PE, Jones RC, Siston AM, Paul WS, Austin CC, Gerber SI (2004) Clinical characteristics and functional outcomes of West Nile Fever. Ann Intern Med 141:360–365PubMedGoogle Scholar
  190. 190.
    Weissenbock H, Kolodziejek J, Url A, Lussy H, Rebel-Bauder B, Nowotny N (2002) Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg Infect Dis 8:652–656PubMedCrossRefGoogle Scholar
  191. 191.
    Weissenbock H, Bakonyi T, Chvala S, Nowotny N (2004) Experimental Usutu virus infection of suckling mice causes neuronal and glial cell apoptosis and demyelination. Acta Neuropathol (Berl) 108:453–460CrossRefGoogle Scholar
  192. 192.
    Wilson JR, de Sessions PF, Leon MA, Scholle F (2008) West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J Virol 82:8262–8271PubMedCrossRefGoogle Scholar
  193. 193.
    Xiao SY, Guzman H, Zhang H, Travassos da Rosa AP, Tesh RB (2001) West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis 7:714–721PubMedGoogle Scholar
  194. 194.
    Zeller HG, Schuffenecker I (2004) West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis 23:147–156PubMedCrossRefGoogle Scholar
  195. 195.
    Zijlstra M, Li E, Sajjadi F, Subramani S, Jaenisch R (1989) Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342:435–438PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • David C. Clark
    • 1
    Email author
  • Aaron C. Brault
    • 2
  • Elizabeth Hunsperger
    • 3
  1. 1.Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary MedicineUniversity of CaliforniaDavisUSA
  2. 2.Division of Vector-Borne DiseasesCenters for Disease Control and PreventionFort CollinsUSA
  3. 3.Division of Vector-Borne DiseasesCenters for Disease Control and PreventionSan JuanUSA

Personalised recommendations