Archives of Virology

, Volume 157, Issue 4, pp 769–772 | Cite as

Complete genome sequence of the podoviral bacteriophage ΦCP24R, which is virulent for Clostridium perfringens

  • Cesar A. Morales
  • Brian B. Oakley
  • Johnna K. Garrish
  • Gregory R. Siragusa
  • Mary B. Ard
  • Bruce S. Seal
Annotated Sequence Record

Abstract

Bacteriophage ΦCP24R was isolated from raw sewage from a waste treatment plant, and lytic activity was observed against a type A Clostridium perfringens isolate. Electron microscopy revealed a small virion (44-nm-diameter icosahedral capsid) with a short, non-contractile tail, indicative of a member of the family Podoviridae. The phage had a linear, double-stranded DNA genome of 18,919 base pairs (bp) with 41 bp inverted terminal repeats and a type B DNA polymerase, which are characteristics of members of the subfamily Picovirinae. Out of 22 predicted genes in the genome, ten had significant sequence similarity to proteins of known function. Three distinct genes with lytic domains were identified, including a zinc carboxypeptidase domain that has not been previously reported in viruses. The ΦCP24R genome described herein is only the second Clostridium perfringens podovirus genome reported to date.

Notes

Acknowledgments

This work was supported by ARS-USDA project number 6612-3200-060-00D. We thank Manju Amin, Susan Brooks, and Susan Mize for their technical assistance on this project.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

705_2011_1218_MOESM1_ESM.pdf (30 kb)
Supplementary material 1 (PDF 29 kb). Table of open reading frames
705_2011_1218_MOESM2_ESM.pdf (67 kb)
Supplementary material 2 (PDF 67 kb)

References

  1. 1.
    Petit L, Gibert M, Popoff MR (1999) Clostridium perfringens: toxinotype and genotype. Trends Microbiol 7(3):104–110PubMedCrossRefGoogle Scholar
  2. 2.
    Songer JG (1996) Clostridial enteric diseases of domestic animals. Clin Microbiol Rev 9(2):216–234PubMedGoogle Scholar
  3. 3.
    Songer JG (2010) Clostridia as agents of zoonotic disease. Vet Microbiol 140(3–4):399–404. doi: 10.1016/j.vetmic.2009.07.003 PubMedCrossRefGoogle Scholar
  4. 4.
    Van Immerseel F, Rood JI, Moore RJ, Titball RW (2009) Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol 17(1):32–36. doi: 10.1016/j.tim.2008.09.005 PubMedCrossRefGoogle Scholar
  5. 5.
    Gross M (2011) Revived interest in bacteriophages. Curr Biol 21(8):R267–R270PubMedCrossRefGoogle Scholar
  6. 6.
    Siragusa GR, Danyluk MD, Hiett KL, Wise MG, Craven SE (2006) Molecular subtyping of poultry-associated type A Clostridium perfringens isolates by repetitive-element PCR. J Clin Microbiol 44(3):1065–1073. doi: 10.1128/JCM.44.3.1065-1073.2006 PubMedCrossRefGoogle Scholar
  7. 7.
    Volozhantsev NV, Verevkin VV, Bannov VA, Krasilnikova VM, Myakinina VP, Zhilenkov EL, Svetoch EA, Stern NJ, Oakley BB, Seal BS (2011) The genome sequence and proteome of bacteriophage PhiCPV1 virulent for Clostridium perfringens. Virus Res 155(2):433–439. doi: 10.1016/j.virusres.2010.11.012 PubMedCrossRefGoogle Scholar
  8. 8.
    Seal BS, Fouts DE, Simmons M, Garrish JK, Kuntz RL, Woolsey R, Schegg KM, Kropinski AM, Ackermann HW, Siragusa GR (2011) Clostridium perfringens bacteriophages PhiCP39O and PhiCP26F: genomic organization and proteomic analysis of the virions. Arch Virol 156(1):25–35. doi: 10.1007/s00705-010-0812-z PubMedCrossRefGoogle Scholar
  9. 9.
    Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91PubMedGoogle Scholar
  10. 10.
    Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC (2009) IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25(17):2271–2278. doi: 10.1093/bioinformatics/btp393 PubMedCrossRefGoogle Scholar
  11. 11.
    Mount DW (2007) Using the Basic Local Alignment Search Tool (BLAST). CSH Protoc. doi: 10.1101/pdb.top17 (pdb top17)Google Scholar
  12. 12.
    Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229. doi: 10.1093/nar/gkq1189 (Database issue)PubMedCrossRefGoogle Scholar
  13. 13.
    Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25(1):119–120. doi: 10.1093/bioinformatics/btn578 PubMedCrossRefGoogle Scholar
  14. 14.
    Mahadevan P, King JF, Seto D (2009) Data mining pathogen genomes using GeneOrder and CoreGenes and CGUG: gene order, synteny and in silico proteomes. Int J Comput Biol Drug Des 2(1):100–114PubMedCrossRefGoogle Scholar
  15. 15.
    Mendez J, Blanco L, Salas M (1997) Protein-primed DNA replication: a transition between two modes of priming by a unique DNA polymerase. EMBO J 16(9):2519–2527. doi: 10.1093/emboj/16.9.2519 PubMedCrossRefGoogle Scholar
  16. 16.
    Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159(5):406–414. doi: 10.1016/j.resmic.2008.03.005 PubMedCrossRefGoogle Scholar
  17. 17.
    Meijer WJ, Horcajadas JA, Salas M (2001) Phi29 family of phages. Microbiol Mol Biol Rev 65(2):261–287. doi: 10.1128/MMBR.65.2.261-287.2001 second page, table of contentsPubMedCrossRefGoogle Scholar
  18. 18.
    Saren AM, Ravantti JJ, Benson SD, Burnett RM, Paulin L, Bamford DH, Bamford JK (2005) A snapshot of viral evolution from genome analysis of the tectiviridae family. J Mol Biol 350(3):427–440. doi: 10.1016/j.jmb.2005.04.059 PubMedCrossRefGoogle Scholar
  19. 19.
    Arisaka F, Kanamaru S, Leiman P, Rossmann MG (2003) The tail lysozyme complex of bacteriophage T4. Int J Biochem Cell Biol 35(1):16–21PubMedCrossRefGoogle Scholar
  20. 20.
    Rodriguez de la Vega M, Sevilla RG, Hermoso A, Lorenzo J, Tanco S, Diez A, Fricker LD, Bautista JM, Aviles FX (2007) Nna1-like proteins are active metallocarboxypeptidases of a new and diverse M14 subfamily. Faseb J 21(3):851–865. doi: 10.1096/fj.06-7330com PubMedCrossRefGoogle Scholar
  21. 21.
    Kropinski AM, Lingohr EJ, Ackermann HW (2011) The genome sequence of enterobacterial phage 7–11, which possesses an unusually elongated head. Arch Virol 156(1):149–151. doi: 10.1007/s00705-010-0835-5 PubMedCrossRefGoogle Scholar
  22. 22.
    Wang IN, Smith DL, Young R (2000) Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825. doi: 10.1146/annurev.micro.54.1.799 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Cesar A. Morales
    • 1
  • Brian B. Oakley
    • 1
  • Johnna K. Garrish
    • 1
  • Gregory R. Siragusa
    • 2
  • Mary B. Ard
    • 3
  • Bruce S. Seal
    • 1
  1. 1.Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research CenterAgricultural Research Service, USDAAthensUSA
  2. 2.Danisco USAWaukeshaUSA
  3. 3.Department of Pathology, College of Veterinary MedicineThe University of GeorgiaAthensUSA

Personalised recommendations