Advertisement

Archives of Virology

, Volume 157, Issue 4, pp 733–738 | Cite as

Genetic characterization of Pseudomonas aeruginosa bacteriophage KPP10

  • Jumpei Uchiyama
  • Mohammad Rashel
  • Iyo Takemura
  • Shin-ichiro Kato
  • Takako Ujihara
  • Asako Muraoka
  • Shigenobu Matsuzaki
  • Masanori Daibata
Brief Report

Abstract

Bacteriophage (phage) KPP10 has been used in experimental phage therapies directed against P. aeruginosa infections. To examine the eligibility of phage KPP10 as a therapeutic phage, its genome was analyzed. The genomic DNA was shown to be 88,322 bp long, with 158 open reading frames (ORFs), and three tRNA genes were predicted. No ORF-encoded pathogenicity or lysogenization factor was predicted. A comparative genomic analysis revealed that phage KPP10, together with phage PAK_P3, can be grouped as a new type of lytic phage infecting P. aeruginosa. Phage KPP10 is considered to be suitable for therapeutic purposes because it is a lytic phage without ORF-encoded pathogenicity or a lysogenization factors.

Keywords

Pseudomonas aeruginosa Bacteriophage Therapeutic phage Genomes 

Notes

Acknowledgments

We thank Mr. Shingo Sakurai for his technical support, and thank the Science Research Center, Kochi, Japan, for its experimental support. This study was funded by a Grant-in-Aid for Research Activity Startup (no. 22890129), Kochi System Glycobiology Center, Kochi, Japan, and the Center of Biomembrane Functions Controlling Biological Systems, Kochi, Japan.

Supplementary material

705_2011_1210_MOESM1_ESM.pdf (452 kb)
Supplementary material 1 (PDF 452 kb)

References

  1. 1.
    Angly F, Youle M, Nosrat B et al (2009) Genomic analysis of multiple Roseophage SIO1 strains. Environ Microbiol 11:2863–2873PubMedCrossRefGoogle Scholar
  2. 2.
    Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663PubMedCrossRefGoogle Scholar
  3. 3.
    Black LW, Showe MK, Steven AC (1994) Morphogenesis of the T4 head. In: Eiserling FA, Black LW (eds) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, pp 218–258Google Scholar
  4. 4.
    Botstein D (1980) A theory of modular evolution for bacteriophages. Ann N Y Acad Sci 354:484–490PubMedCrossRefGoogle Scholar
  5. 5.
    Comeau AM, Bertrand C, Letarov A, Tétart F, Krisch HM (2007) Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery. Virology 362:384–396PubMedCrossRefGoogle Scholar
  6. 6.
    Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, Balloy V, Touqui L (2010) Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201:1096–1104PubMedCrossRefGoogle Scholar
  7. 7.
    Hambly E, Tétart F, Desplats C, Wilson WH, Krisch HM, Mann NH (2001) A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc Natl Acad Sci USA 98:11411–11416PubMedCrossRefGoogle Scholar
  8. 8.
    Hirakata Y, Tomono K, Tateda K, Matsumoto T, Furuya N, Shimoguchi K, Kaku M, Yamaguchi K (1991) Role of bacterial association with Kupffer cells in occurrence of endogenous systemic bacteremia. Infect Immun 59:289–294PubMedGoogle Scholar
  9. 9.
    Homma JY (1982) Designation of the thirteen O-group antigens of Pseudomonas aeruginosa; an amendment for the tentative proposal in 1976. Jpn J Exp Med 52:317–320PubMedGoogle Scholar
  10. 10.
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-11-119 PubMedCrossRefGoogle Scholar
  11. 11.
    Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:150. doi: 10.3389/fmicb.2011.00150 PubMedGoogle Scholar
  12. 12.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 PubMedCrossRefGoogle Scholar
  13. 13.
    Lehman SM, Kropinski AM, Castle AJ, Svircev AM (2009) Complete genome of the broad-host-range Erwinia amylovora phage ϕEa21–4 and its relationship to Salmonella phage Felix O1. Appl Environ Microbiol 75:2139–2147PubMedCrossRefGoogle Scholar
  14. 14.
    Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610PubMedCrossRefGoogle Scholar
  15. 15.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedCrossRefGoogle Scholar
  16. 16.
    Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, Unno H (2003) Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl Environ Microbiol 69:170–176PubMedCrossRefGoogle Scholar
  17. 17.
    Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L (2011) Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS One 6:e16963. doi: 10.1371/journal.pone.0016963 PubMedCrossRefGoogle Scholar
  18. 18.
    Morita M, Tanji Y, Mizoguchi K, Akitsu T, Kijima N, Unno H (2002) Characterization of a virulent bacteriophage specific for Escherichia coli O157:H7 and analysis of its cellular receptor and two tail fiber genes. FEMS Microbiol Lett 211:77–83PubMedCrossRefGoogle Scholar
  19. 19.
    Müller I, Kube M, Reinhardt R, Jelkmann W, Geider K (2011) Complete genome sequences of three Erwinia amylovora phages isolated in North America and a bacteriophage induced from an Erwinia tasmaniensis strain. J Bacteriol 193:795–796PubMedCrossRefGoogle Scholar
  20. 20.
    Nakayama K, Kanaya S, Ohnishi M, Terawaki Y, Hayashi T (1999) The complete nucleotide sequence of ϕCTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol Microbiol 31:399–419PubMedCrossRefGoogle Scholar
  21. 21.
    Ohtsubo Y, Ikeda-Ohtsubo W, Nagata Y, Tsuda M (2008) GenomeMatcher: a graphical user interface for DNA sequence comparison. BMC Bioinformatics 9:376PubMedCrossRefGoogle Scholar
  22. 22.
    Paterson S, Vogwill T, Buckling A et al (2010) Antagonistic coevolution accelerates molecular evolution. Nature 464:275–278PubMedCrossRefGoogle Scholar
  23. 23.
    Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  24. 24.
    Shilov IV, Seymour SL, Patel AA et al (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6:1638–1655PubMedCrossRefGoogle Scholar
  25. 25.
    Uchiyama J, Maeda Y, Takemura I, Chess-Williams R, Wakiguchi H, Matsuzaki S (2009) Blood kinetics of four intraperitoneally administered therapeutic candidate bacteriophages in healthy and neutropenic mice. Microbiol Immunol 53:301–304PubMedCrossRefGoogle Scholar
  26. 26.
    Villegas A, She YM, Kropinski AM et al (2009) The genome and proteome of a virulent Escherichia coli O157:H7 bacteriophage closely resembling Salmonella phage Felix O1. Virol J 6:41. doi: 10.1186/1743-422X-6-41 PubMedCrossRefGoogle Scholar
  27. 27.
    Watanabe R, Matsumoto T, Sano G et al (2007) Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 51:446–452PubMedCrossRefGoogle Scholar
  28. 28.
    Yanagihara K, Tomono K, Imamura Y et al (2002) Effect of clarithromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model. J Antimicrob Chemother 49:867–870PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jumpei Uchiyama
    • 1
  • Mohammad Rashel
    • 1
  • Iyo Takemura
    • 1
  • Shin-ichiro Kato
    • 2
  • Takako Ujihara
    • 3
  • Asako Muraoka
    • 4
  • Shigenobu Matsuzaki
    • 1
  • Masanori Daibata
    • 1
  1. 1.Department of Microbiology and Infection, Faculty of MedicineKochi UniversityNankokuJapan
  2. 2.Research Institute of Molecular GeneticsKochi UniversityNankokuJapan
  3. 3.Science Research CenterKochi UniversityNankokuJapan
  4. 4.Kochi Gakuen CollegeKochiJapan

Personalised recommendations