Archives of Virology

, Volume 157, Issue 3, pp 497–501 | Cite as

vHoT: a database for predicting interspecies interactions between viral microRNA and host genomes

Brief Report

Abstract

Some viruses have been reported to transcribe microRNAs, implying complex relationships between the host and the pathogen at the post-transcriptional level through microRNAs in virus-infected cells. Although many computational algorithms have been developed for microRNA target prediction, few have been designed exclusively to find cellular or viral mRNA targets of viral microRNAs in a user-friendly manner. To address this, we introduce the viral microRNA host target (vHoT) database for predicting interspecies interactions between viral microRNA and host genomes. vHoT supports target prediction of 271 viral microRNAs from human, mouse, rat, rhesus monkey, cow, and virus genomes. vHoT is freely available at http://dna.korea.ac.kr/vhot.

Supplementary material

705_2011_1181_MOESM1_ESM.pdf (852 kb)
Supplementary material 1 (PDF 851 kb)

References

  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  2. 2.
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86PubMedCrossRefGoogle Scholar
  3. 3.
    Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X (2010) Epigenetic regulation of mir-184 by mbd1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6:433–444PubMedCrossRefGoogle Scholar
  4. 4.
    Grey F, Tirabassi R, Meyers H, Wu G, McWeeney S, Hook L, Nelson JA (2010) A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′UTRs. PLoS Pathog 6:e1000967PubMedCrossRefGoogle Scholar
  5. 5.
    Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF, Wang ED (2010) MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 70:3119–3127PubMedCrossRefGoogle Scholar
  6. 6.
    Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA target predictions across seven drosophila species and comparison to mammalian targets. PLoS Comput Biol 1:e13PubMedCrossRefGoogle Scholar
  7. 7.
    Hsu PW, Lin LZ, Hsu SD, Hsu JB, Huang HD (2007) Vita: prediction of host microRNAs targets on viruses. Nucleic Acids Res 35:D381–D385PubMedCrossRefGoogle Scholar
  8. 8.
    Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178PubMedCrossRefGoogle Scholar
  9. 9.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798PubMedCrossRefGoogle Scholar
  10. 10.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  11. 11.
    Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217PubMedCrossRefGoogle Scholar
  12. 12.
    Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT, Braich R, Manoharan M, Soutschek J, Ohler U, Cullen BR (2007) A viral microRNA functions as an orthologue of cellular mir-155. Nature 450:1096–1099PubMedCrossRefGoogle Scholar
  13. 13.
    Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736PubMedCrossRefGoogle Scholar
  14. 14.
    Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783PubMedGoogle Scholar
  15. 15.
    Lagana A, Forte S, Russo F, Giugno R, Pulvirenti A, Ferro A (2010) Prediction of human targets for viral-encoded microRNAs by thermodynamics and empirical constraints. J RNAi Gene Silencing 6:379–385PubMedGoogle Scholar
  16. 16.
    Elefant N, Berger A, Shein H, Hofree M, Margalit H, Altuvia Y (2011) RepTar: a database of predicted cellular targets of host and viral miRNAs. Nucleic Acids Res 39:D188–D194PubMedCrossRefGoogle Scholar
  17. 17.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363PubMedCrossRefGoogle Scholar
  18. 18.
    Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microrna.org resource: targets and expression. Nucleic Acids Res 36:D149–D153PubMedCrossRefGoogle Scholar
  19. 19.
    Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517PubMedCrossRefGoogle Scholar
  20. 20.
    Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10:295PubMedCrossRefGoogle Scholar
  21. 21.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284PubMedCrossRefGoogle Scholar
  22. 22.
    Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111PubMedCrossRefGoogle Scholar
  23. 23.
    Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342:129–138PubMedGoogle Scholar
  24. 24.
    Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microrna sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144PubMedCrossRefGoogle Scholar
  25. 25.
    Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158PubMedCrossRefGoogle Scholar
  26. 26.
    Sczyrba A, Kruger J, Mersch H, Kurtz S, Giegerich R (2003) RNA-related tools on the bielefeld bioinformatics server. Nucleic Acids Res 31:3767–3770PubMedCrossRefGoogle Scholar
  27. 27.
    Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63PubMedCrossRefGoogle Scholar
  28. 28.
    Bessant C, Shadforth I, Oakley D (2009) Building bioinformatics solutions: with Perl, R and MySQL. Oxford biology. Oxford University Press, OxfordGoogle Scholar
  29. 29.
    Descartes A, Bunce T (2000) Programming the Perl DBI. O’Reilly, CambridgeGoogle Scholar
  30. 30.
    Zawodny JD, Balling DJ (2004) High performance MySQL: optimization, backups, replication, and load balancing, 1st edn. O’Reilly, BeijingGoogle Scholar
  31. 31.
    Sarnow P, Jopling C, Norman K, Schutz S, Wehner K (2006) MicroRNAs: expression, avoidance and subversion by vertebrate viruses. Nat Rev Microbiol 4:651–659PubMedCrossRefGoogle Scholar
  32. 32.
    Sethupathy P, Corda B, Hatzigeorgiou A (2006) Tarbase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12:192–197PubMedCrossRefGoogle Scholar
  33. 33.
    Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Electrical EngineeringKorea UniversitySeoulKorea
  2. 2.College of PharmacyChung-Ang UniversitySeoulKorea

Personalised recommendations