Archives of Virology

, Volume 157, Issue 2, pp 225–234 | Cite as

Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic against Staphylococcus aureus strains

  • Magdalena Kwiatek
  • Sylwia Parasion
  • Lidia Mizak
  • Romuald Gryko
  • Michał Bartoszcze
  • Janusz Kocik
Original Article

Abstract

Methicillin-resistant strains of Staphylococcus aureus (MRSA) are now the most commonly reported antibiotic-resistant bacterium in clinical settings. Therefore, there is an urgent need to develop novel antibacterial agents to control this pathogen. Bacteriophage therapy is a potential alternative treatment for MRSA infections. The objective of this study was characterization of a novel virulent bacteriophage (MSA6) isolated from a cow with mastitis. Electron microscopy showed its resemblance to members of the family Myoviridae, with an isometric head (66 nm) and a long contractile tail (173 nm). The genome of phage MSA6 was tested by pulsed-field gel electrophoresis and estimated to be about 143 kb. It exhibited rapid adsorption (>82% in 5 min), a short latent period (15 min) and a relatively small burst size (23 PFU/cell). Isolated phage was capable of infecting a wide spectrum of staphylococcal strains of both human and bovine origin. The results of this investigation indicate that MSA6 is similar to other bacteriophages belonging to the family Myoviridae (Twort, K, G1, 812) that have been successfully used in bacteriophage therapy.

References

  1. 1.
    Ackermann HW (1998) Tailed bacteriophages: the order caudovirales. Adv Virus Res 51:135–201PubMedCrossRefGoogle Scholar
  2. 2.
    Becker SC, Dong S, Foster-Frey J, Pritchard DG, Donovan DM (2009) LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett 294:52–60PubMedCrossRefGoogle Scholar
  3. 3.
    Chang HC, Chen CR, Lin JW, Shen GH, Chang KM, Tseng YH, Weng SF (2005) Isolation and characterization of novel giant Stenotrophomonas maltophilia phage φSMA5. Appl Environ Microbiol 71:1387–1393PubMedCrossRefGoogle Scholar
  4. 4.
    Chibani-Chennoufi S, Dillmann ML, Marvin-Guy L, Rami-Shojaei S, Brüssow H (2004) Lactobacillus plantarum bacteriophage LP65: a new member of the SPO1-like genus of the family myoviridae. J Bacteriol 186:7069–7083PubMedCrossRefGoogle Scholar
  5. 5.
    Clokie MRJ, Kropinski AM (2009) Bacteriophages: methods and protocols: molecular and applied aspects, vol 2. Humana Press, Totowa, NJGoogle Scholar
  6. 6.
    Eyer L, Pantůček R, Zdráhal Z, Konečná H, Kašpárek P, Růžičková V, Hernychová L, Preisler J, Doškař J (2007) Structural protein analysis of the polyvalent staphylococcal bacteriophage 812. Proteomics 7:64–72PubMedCrossRefGoogle Scholar
  7. 7.
    García P, Martínez B, Obeso JM, Lavigne R, Lurz R, Rodríguez A (2009) Functional genomic analysis of two Staphylococcus aureus phages isolated from the dairy environment. Appl Environ Microbiol 75:7663–7673PubMedCrossRefGoogle Scholar
  8. 8.
    Gill JJ, Sabour PM, Leslie KE, Griffiths MW (2006) Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J Appl Microbiol 101:377–386PubMedCrossRefGoogle Scholar
  9. 9.
    Gupta R, Prasad Y (2011) Efficacy of polyvalent bacteriophage P-27/HP to control multidrug resistant Staphylococcus aureus associated with human infections. Curr Microbiol 62:255–260PubMedCrossRefGoogle Scholar
  10. 10.
    Hoshiba H, Uchiyama J, Kato S, Ujihara T, Muraoka A, Daibata M, Wakiguchi H, Matsuzaki S (2010) Isolation and characterization of a novel Staphylococcus aureus bacteriophage, φMR25, and its therapeutic potential. Arch Virol 155:545–552PubMedCrossRefGoogle Scholar
  11. 11.
    Huang LH, Farnet CM, Ehrlich KC, Ehrlich M (1982) Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nucleic Acids Res 10:1579–1591PubMedCrossRefGoogle Scholar
  12. 12.
    Klumpp J, Dorscht J, Lurz R, Bielmann R, Wieland M, Zimmer M, Calendar R, Loessner MJ (2008) The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: a model for the SPO1-like Myoviruses of Gram-Positive bacteria. J Bacteriol 190:5753–5765PubMedCrossRefGoogle Scholar
  13. 13.
    Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224. doi:10.1186/1471-2180-9-224 PubMedCrossRefGoogle Scholar
  14. 14.
    Lu Z, Breidt F Jr, Fleming HP, Altermann E, Klaenhammer TR (2003) Isolation and characterization of Lactobacillus plantarum bacteriophage, φJL-1, from a cucumber fermentation. Int J Food Microbiol 84:225–235PubMedCrossRefGoogle Scholar
  15. 15.
    Ma YL, Lu CP (2008) Isolation and identification of a bacteriophage capable of infecting Streptococcus suis type 2 strains. Vet Microbiol 132:340–347PubMedCrossRefGoogle Scholar
  16. 16.
    Małek W, Wdowiak-Wróbel S, Bartosik M, Konopa G, Narajczyk M (2009) Characterization of phages virulent for Robinia pseudoacacia Rhizobia. Curr Microbiol 59:187–192PubMedCrossRefGoogle Scholar
  17. 17.
    Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, De Corte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 4:e4944. doi:10.1371/journal.pone.0004944 PubMedCrossRefGoogle Scholar
  18. 18.
    Międzyborski R, Fortuna W, Weber-Dąbrowska B, Górski A (2007) Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Postepy Hig Med Dosw 61:461–465Google Scholar
  19. 19.
    O’Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP (2004) Genome of staphylococcal phage K: a new lineage of Myoviridae infecting Gram-positive bacteria with a low G+C content. J Bacteriol 186:2862–2871PubMedCrossRefGoogle Scholar
  20. 20.
    O’Flaherty S, Ross RP, Flynn J, Meaney WJ, Fitzgerald GF, Coffey A (2005) Isolation and characterization of two anti-staphylococcal bacteriophages specific for pathogenic Staphylococcus aureus associated with bovine infections. Lett Appl Microbiol 41:482–486PubMedCrossRefGoogle Scholar
  21. 21.
    O’Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A (2005) Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol 71:1836–1842PubMedCrossRefGoogle Scholar
  22. 22.
    Pantůček R, Rosypalová A, Doškař J, Kailerová J, Růžičková V, Borecká P, Snopková S, Horváth R, Götz F, Rosypal S (1998) The polyvalent staphylococcal phage φ812: its host-range mutants and related phages. Virology 246:241–252PubMedCrossRefGoogle Scholar
  23. 23.
    Pantůček R, Doškař J, Růžičková V, Kašpárek P, Oráčová E, Kvardová V, Rosypal S (2004) Identification of bacteriophage types and their carriage in Staphylococcus aureus. Arch Virol 149:1689–1703PubMedCrossRefGoogle Scholar
  24. 24.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.YGoogle Scholar
  25. 25.
    Shao Y, Wang IN (2008) Bacteriophage adsorption rate and optimal lysis time. Genetics 180:471–482PubMedCrossRefGoogle Scholar
  26. 26.
    Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858PubMedCrossRefGoogle Scholar
  27. 27.
    Slanetz LW, Jawetz E (1941) Isolation and Characteristics of bacteriophages for staphylococci of bovine mastitis. J Bacteriol 41:447–455PubMedGoogle Scholar
  28. 28.
    Son JS, Kim EB, Lee SJ, Jun SY, Yoon SJ, Kang SH, Choi YJ (2010) Characterization of Staphylococcus aureus derived from bovine mastitis and isolation of two lytic bacteriophages. J Gen Appl Microbiol 56:347–353PubMedCrossRefGoogle Scholar
  29. 29.
    Štyriak I, Pristaš P, Javorský P (2000) Lack of GATC sites in the genome of Streptococcus bovis bacteriophage F4. Res Microbiol 151:285–289PubMedCrossRefGoogle Scholar
  30. 30.
    Uchiyama J, Rashe M, Maeda Y, Takemura I, Sugihara S, Akechi K, Muraoka A, Wakiguchi H, Matsuzaki S (2007) Isolation and characterization of a novel Enterococcus faecalis bacteriophage φEF24C as a therapeutic candidate. FEMS Microbiol Lett 278:200–206CrossRefGoogle Scholar
  31. 31.
    Yang H, Liang L, Lin S, Jia S (2010) Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 10:131. http://www.biomedcentral.com/1471-2180/10/131
  32. 32.
    Yoon SS, Barrangou-Poueys R, Breidt F Jr, Fleming HP (2007) Detection and characterization of a lytic Pediococcus bacteriophage from the fermenting cucumber brine. J Microbiol Biotechnol 17:262–270PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Magdalena Kwiatek
    • 1
  • Sylwia Parasion
    • 1
  • Lidia Mizak
    • 1
  • Romuald Gryko
    • 1
  • Michał Bartoszcze
    • 1
  • Janusz Kocik
    • 2
  1. 1.Military Institute of Hygiene and EpidemiologyPuławyPoland
  2. 2.Military Institute of Hygiene and EpidemiologyWarsawPoland

Personalised recommendations