Advertisement

Archives of Virology

, Volume 157, Issue 1, pp 1–20 | Cite as

Requirements for empirical immunogenicity trials, rather than structure-based design, for developing an effective HIV vaccine

  • Marc H. V. Van Regenmortel
Brief Review

Abstract

The claim that it is possible to rationally design a structure-based HIV-1 vaccine is based on misconceptions regarding the nature of protein epitopes and of immunological specificity. Attempts to use reverse vaccinology to generate an HIV-1 vaccine on the basis of the structure of viral epitopes bound to monoclonal neutralizing antibodies have failed so far because it was not possible to extrapolate from an observed antigenic structure to the immunogenic structure required in a vaccine. Vaccine immunogenicity depends on numerous extrinsic factors such as the host immunoglobulin gene repertoire, the presence of various cellular and regulatory mechanisms in the immunized host and the process of antibody affinity maturation. All these factors played a role in the appearance of the neutralizing antibody used to select the epitope to be investigated as potential vaccine immunogen, but they cannot be expected to be present in identical form in the host to be vaccinated. It is possible to rationally design and optimize an epitope to fit one particular antibody molecule or to improve the paratope binding efficacy of a monoclonal antibody intended for passive immunotherapy. What is not possible is to rationally design an HIV-1 vaccine immunogen that will elicit a protective polyclonal antibody response of predetermined efficacy. An effective vaccine immunogen can only be discovered by investigating experimentally the immunogenicity of a candidate molecule and demonstrating its ability to induce a protective immune response. It cannot be discovered by determining which epitopes of an engineered antigen molecule are recognized by a neutralizing monoclonal antibody. This means that empirical immunogenicity trials rather than structural analyses of antigens offer the best hope of discovering an HIV-1 vaccine.

Keywords

Vaccine Immunogen Reverse Vaccinology Discontinuous Epitope Antipeptide Antibody Membrane Proximate External Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author is grateful to Pernille Haste-Anderson of the Danish Technically University, Denmark for preparing Figure 1 (A, B) and to Florence Diemer for efficient secretarial assistance.

References

  1. 1.
    Klatt NR, Chahroudi A, Silvestri G (2010) Human immunodeficiency viruses: pathogenesis. In: Mahy BWJ, Van Regenmortel MHV (eds) Desk encyclopedia of human and medical virology. Academic Press, Elsevier, Oxford, pp 345–353Google Scholar
  2. 2.
    Norrby E (ed) (1993) Immunochemistry of AIDS. Karger, SwitzerlandGoogle Scholar
  3. 3.
    Wyatt R, Kwong PD, Desjardins E et al (1998) The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393:705–711PubMedCrossRefGoogle Scholar
  4. 4.
    Zolla-Pazner S (2004) Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol 4:199–210PubMedCrossRefGoogle Scholar
  5. 5.
    Montero M, van Houten NE, Wang X, Scott JK (2008) The membrane proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev 72:54–84PubMedCrossRefGoogle Scholar
  6. 6.
    Hoxie JA (2010) Toward an antibody-based HIV-1. Vaccine Annu Rev Med 61:135–152CrossRefGoogle Scholar
  7. 7.
    Poignard P, Moulard M, Golez E et al (2003) Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles as probed by the binding of neutralizing and non neutralizing antibodies. J Virol 77:353–365PubMedCrossRefGoogle Scholar
  8. 8.
    Moore PL, Crooks ET, Porter L et al (2006) Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1. J Virol 80:2515–2528PubMedCrossRefGoogle Scholar
  9. 9.
    Crooks ET, Moore PL, Franti M et al (2007) A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing no envelope and soluble monomeric gp120. Virology 366:245–262PubMedCrossRefGoogle Scholar
  10. 10.
    Javaherian K, Langlois AJ, McDanal C et al (1989) Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. Proc Natl Acad Sci USA 86:6768–6772PubMedCrossRefGoogle Scholar
  11. 11.
    Muster T, Steindl F, Purtscher M et al (1993) A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 67:6642–6647PubMedGoogle Scholar
  12. 12.
    Zwick MB, Labrijn AF, Wang M et al (2001) Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 75:10892–10905PubMedCrossRefGoogle Scholar
  13. 13.
    Poignard P, Saphire EO, Parren PW, Burton DR (2001) gp120: biologic aspects of structural features. Ann Rev Immunol 19:253–274CrossRefGoogle Scholar
  14. 14.
    Gorny MK, Williams C, Volsky B et al (2002) Human monoclonal antibodies specific for conformation-sensitive epitopes of V3 neutralize human immunodeficiency virus type 1 primary isolates from various clades. J Virol 76:9035–9045PubMedCrossRefGoogle Scholar
  15. 15.
    Dhillon AK, Donners H, Pantophlet R et al (2007) Dissecting the neutralizing antibody specificities of broadly neutralizing sera from human immunodeficiency virus type 1-infected donors. J Virol 81:6548–6562PubMedCrossRefGoogle Scholar
  16. 16.
    Li Y, Migueles SA, Welcher B et al (2007) Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med 13:1032–1034PubMedCrossRefGoogle Scholar
  17. 17.
    Hioe CE, Wrin T, Seaman MS et al (2010) Anti-V3 monoclonal antibodies display broad neutralizing activities against multiple HIV-1 subtypes. PLoS One 5:e10254PubMedCrossRefGoogle Scholar
  18. 18.
    Zwick MB (2005) The membrane-proximal external region of HIV-1 gp41: a vaccine target worth exploring. AIDS 19:1725–1737PubMedCrossRefGoogle Scholar
  19. 19.
    Zwick MB, Burton DR (2007) HIV-1 neutralization: mechanisms and relevance to vaccine design. Curr HIV Res 5:608–624PubMedCrossRefGoogle Scholar
  20. 20.
    Willey S, Aasa-Chapman MM (2008) Humoral immunity to HIV-1: neutralization and antibody effector functions. Trends Microbiol 16:596–604PubMedCrossRefGoogle Scholar
  21. 21.
    Binley J (2009) Specificities of broadly neutralizing anti-HIV-1 sera. Curr Opin HIV AIDS 4:364–372PubMedCrossRefGoogle Scholar
  22. 22.
    Stamatatos L, Morris L, Burton DR, Mascola JR (2009) Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat Med 15:866–870PubMedGoogle Scholar
  23. 23.
    Burton DR (2002) Antibodies, viruses and vaccines. Nat Rev Immunol 2:706–713PubMedCrossRefGoogle Scholar
  24. 24.
    Burton DR (2010) Scaffolding to build a rational vaccine design strategy. Proc Natl Acad Sci USA 107:17859–17860PubMedCrossRefGoogle Scholar
  25. 25.
    Schief WR, Ban YE, Stamatatos L (2009) Challenges for structure-based HIV vaccine design. Curr Opin HIV AIDS 4:431–440PubMedCrossRefGoogle Scholar
  26. 26.
    Saphire EO, Parren PWHI, Pantophlet R et al (2001) Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science 293:1155–1159PubMedCrossRefGoogle Scholar
  27. 27.
    Karlsson-Hedestam GB, Fouchier RA, Phogat S et al (2008) The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nat Rev Microbiol 6:143–155PubMedCrossRefGoogle Scholar
  28. 28.
    Van Regenmortel MHV (2011) Two meanings of reverse vaccinology and the empirical nature of vaccine science. Vaccine 29:7875Google Scholar
  29. 29.
    Van Regenmortel MHV (2011) Limitations to the structure-based design of HIV-1 vaccine immunogens. J Mol Recognit 24:741–753PubMedCrossRefGoogle Scholar
  30. 30.
    Caputo A, Gavioli R, Bellino S et al (2009) HIV-1 Tat-based vaccines: an overview and perspectives in the field of HIV/AIDS vaccine development. Int Rev Immunol 28:285–334PubMedCrossRefGoogle Scholar
  31. 31.
    Atassi MZ, Smith JA (1978) A proposal for the nomenclature of antigenic sites in peptides and proteins. Immunochemistry 15:609–610PubMedCrossRefGoogle Scholar
  32. 32.
    Barlow DJ, Edwards MS, Thornton JM (1986) Continuous and discontinuous protein antigenic determinants. Nature 322:747–748PubMedCrossRefGoogle Scholar
  33. 33.
    Sundberg EJ, Mariuzza RA (2002) Molecular recognition in antibody-antigen complexes. Adv Protein Chem 61:119–160PubMedCrossRefGoogle Scholar
  34. 34.
    Thali M, Olshevsky U, Furman C et al (1991) Characterization of a discontinuous human immunodeficiency virus type 1 gp120 epitope recognized by a broadly reactive neutralizing human monoclonal antibody. J Virol 65:6188–6193PubMedGoogle Scholar
  35. 35.
    Moore JP, Ho DD (1993) Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J Virol 67:863–875PubMedGoogle Scholar
  36. 36.
    VanCott TC, Bethke FR, Burke DS et al (1995) Lack of induction of antibodies specific for conserved, discontinuous epitopes of HIV-1 envelope glycoprotein by candidate AIDS vaccines. J Immunol 155:4100–4110PubMedGoogle Scholar
  37. 37.
    Zwick MB, Kelleher R, Jensen R et al (2003) A novel human antibody against human immunodeficiency virus type 1 gp120 is V1, V2, and V3 loop-dependent and helps delimit the epitope of the broadly neutralizing antibody immunoglobulin G1 b12. J Virol 77:6965–6978PubMedCrossRefGoogle Scholar
  38. 38.
    Laver WG, Air GM, Webster RG, Smith-Gill SJ (1990) Epitopes on protein antigens: misconceptions and realities. Cell 61:553–556PubMedCrossRefGoogle Scholar
  39. 39.
    Van Regenmortel MHV (2009) What is a B cell epitope? In: Reineke U, Schutkowski M (eds) Epitope mapping protocols. Humana Press, Springer, pp 3–20CrossRefGoogle Scholar
  40. 40.
    Hopp TP (1993) Retrospective: 12 years of antigenic determinant predictions, and more. Pept Res 6:183–190PubMedGoogle Scholar
  41. 41.
    Hopp TP (1994) Different views of protein antigenicity. Pept Res 7:229–231PubMedGoogle Scholar
  42. 42.
    Van Regenmortel MHV, Pellequer J-L (1994) Predicting antigenic determinants in proteins: looking for unidimensional solutions to a three-dimensional problem? Pept Res 7:224–228PubMedGoogle Scholar
  43. 43.
    Ponomarenko JV, Van Regenmortel MHV (2009) B cell epitope prediction. In: Gu J, Bourne PE (eds) Structural bioinformatics, 2nd edn. John Wiley, Hoboken, pp 849–879Google Scholar
  44. 44.
    Greenbaum JA, Andersen PH, Blythe M et al (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 20:75–82PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang Q, Wang P, Kim Y, Haste-Andersen P et al (2008) Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res 36:W513–W518PubMedCrossRefGoogle Scholar
  46. 46.
    Van Regenmortel MHV (1999) Molecular dissection of protein antigens and the prediction of epitopes. In: Van Regenmortel MHV, Muller S (eds) Synthetic peptides as antigens. Elsevier, Amsterdam, pp 1–78Google Scholar
  47. 47.
    Chen S-WW, Van Regenmortel MHV, Pellequer J-L (2009) Structure-activity relationships in peptide-antibody complexes: implications for epitope prediction and development of synthetic peptide vaccines. Curr Med Chem 16:953–964PubMedCrossRefGoogle Scholar
  48. 48.
    Muller S, Plaué S, Couppez M, Van Regenmortel MHV (1986) Comparison of different methods for localizing antigenic regions in histone H2A. Mol Immunol 23:593–601PubMedCrossRefGoogle Scholar
  49. 49.
    Trifilieff E, Dubs MC, Van Regenmortel MHV (1991) Antigenic cross-reactivity potential of synthetic peptides immobilized on polyethylene rods. Mol Immunol 28:889–896PubMedCrossRefGoogle Scholar
  50. 50.
    Getzoff ED, Tainer JA, Lerner RA, Geysen HM (1988) The chemistry and mechanism of antibody binding to protein antigens. Adv Immunol 43:1–98PubMedCrossRefGoogle Scholar
  51. 51.
    Geysen HM, Mason TJ, Rodda SJ (1988) Cognitive features of continuous antigenic determinants. J Mol Recognit 1:32–41PubMedCrossRefGoogle Scholar
  52. 52.
    Jemmerson R (1987) Antigenicity and native structure of globular proteins: low frequency of peptide reactive antibodies. Proc Natl Acad Sci USA 84:9180–9184PubMedCrossRefGoogle Scholar
  53. 53.
    Spangler BD (1991) Binding to native proteins by antipeptide monoclonal antibodies. J Immunol 146:1591–1595PubMedGoogle Scholar
  54. 54.
    Lerner RA (1984) Antibodies of predetermined specificity in biology and medicine. Adv Immunol 36:1–44PubMedCrossRefGoogle Scholar
  55. 55.
    Darst SA, Robertson CR, Berzofsky JA (1988) Adsorption of the protein antigen myoglobin affects the binding of conformation-specific monoclonal antibodies. Biophys J 53:533–539PubMedCrossRefGoogle Scholar
  56. 56.
    Hafenstein S, Bowman VD, Sun T et al (2009) Structural comparison of different antibodies interacting with parvovirus capsids. J Virol 83:5556–5566PubMedCrossRefGoogle Scholar
  57. 57.
    Van Regenmortel MHV (1966) Plant virus serology. Adv Virus Res 12:207–271PubMedCrossRefGoogle Scholar
  58. 58.
    Van Regenmortel MHV (1992) The conformational specificity of viral epitopes. FEMS Microbiol Lett 100:483–487Google Scholar
  59. 59.
    Neurath AR, Rubin BA (1971) Viral structural components as immunogens of prophylactic value. Monographs in virology. Karger, BaselGoogle Scholar
  60. 60.
    Van Regenmortel MHV, Neurath AR (1985) Immunochemistry of viruses. Elsevier, AmsterdamGoogle Scholar
  61. 61.
    Broder CC, Earl PL, Long D et al (1994) Antigenic implications of human immunodeficiency virus type 1 envelope quaternary structure: oligomer-specific and -sensitive monoclonal antibodies. Proc Natl Acad Sci USA 91:11699–11703PubMedCrossRefGoogle Scholar
  62. 62.
    Cho MW, Lee MK, Chen CH et al (2000) Identification of gp120 regions targeted by a highly potent neutralizing antiserum elicited in a chimpanzee inoculated with a primary human immunodeficiency virus type 1 isolate. J Virol 74:9749–9754PubMedCrossRefGoogle Scholar
  63. 63.
    Gorny MK, Stamatatos L, Volsky B et al (2005) Identification of a new quaternary neutralizing epitope on human immunodeficiency virus type 1 virus particles. J Virol 79:5232–5237PubMedCrossRefGoogle Scholar
  64. 64.
    Bothner B, Dong XF, Bibbs L et al (1998) Evidence of viral capsid dynamics using limited proteolysis and mass spectrometry. J Biol Chem 9:673–676CrossRefGoogle Scholar
  65. 65.
    Yuan W, Bazick J, Sodroski J (2006) Characterization of the multiple conformational states of free monomeric and trimeric human immunodeficiency virus envelope glycoproteins after fixation by cross-linker. J Virol 80:6725–6737PubMedCrossRefGoogle Scholar
  66. 66.
    Jerne NK (1960) Immunological speculations. Annu Rev Microbiol 14:341–358PubMedCrossRefGoogle Scholar
  67. 67.
    Bou-Habib DC, Roderiquez G, Oravecz T et al (1994) Cryptic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization. J Virol 68:6006–6013PubMedGoogle Scholar
  68. 68.
    Poignard P, Klasse PJ, Sattentau QJ (1996) Antibody neutralization of HIV-1. Immunol Today 17:239–246PubMedCrossRefGoogle Scholar
  69. 69.
    Geysen HM, Rodda SJ, Mason TJ (1986) A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol 23:709–715PubMedCrossRefGoogle Scholar
  70. 70.
    Irving MB, Pan O, Scott JK (2001) Random-peptide libraries and antigen-fragment libraries for epitope mapping and the development of vaccines and diagnostics. Curr Opin Chem Biol 5:314–324PubMedCrossRefGoogle Scholar
  71. 71.
    Hanin V, Déry O, Boquet D et al (1995) Importance of hydropathic complementarity for the binding of the neuropeptide substance P to a monoclonal antibody: equilibrium and kinetic studies. Mol Immunol 34:829–838CrossRefGoogle Scholar
  72. 72.
    Van Regenmortel MHV (1998) Mimotopes, continuous paratopes and hydropathic complementarity: novel approximations in the description of immunological specificity. J Disper Sci Technol 8:140–144Google Scholar
  73. 73.
    Blalok J (1990) Complementarity of peptides specified by “sense” and “antisense” strands of DNA. Trends Biotechnol 8:140–144CrossRefGoogle Scholar
  74. 74.
    Tropsha A, KizlerJS Chaiken IM (1992) Making sense of antisense: a review of experimental data and developing ideas on sense-antisense recognition. J Mol Recognit 5:43–54PubMedCrossRefGoogle Scholar
  75. 75.
    Yu MW, Scott JK, Fournier A, Talbot PJ (2000) Characterization of murine coronavirus neutralization epitopes with phage-displayed peptides. Virology 271:182–196PubMedCrossRefGoogle Scholar
  76. 76.
    Malby RL, Tulip WR, Harley VR et al (1994) The structure of a complex between the NC10 antibody and influenza virus neuraminidase and comparison with the overlapping binding site of the NC41 antibody. Structure 2:733–746PubMedCrossRefGoogle Scholar
  77. 77.
    Lescar J, Pellegrini M, Souchon H et al (1995) Crystal structure of a cross-reaction complex between Fab F9.13.7 and guinea fowl lysozyme. J Biol Chem 270:18067–18076PubMedCrossRefGoogle Scholar
  78. 78.
    Van Regenmortel MHV (2009) Synthetic peptide vaccines and the search for neutralization B cell epitopes. Open Vaccine J 2:33–44Google Scholar
  79. 79.
    Delmastro P, Meola A, Monaci P et al (1997) Immunogenicity of filamentous phage displaying peptide mimotopes after oral administration. Vaccine 15:1276–1285PubMedCrossRefGoogle Scholar
  80. 80.
    Puntoriero G, Meola A, Lahm A et al (1998) Towards a solution for hepatitis C virus hypervariability: mimotopes of the hypervariable region 1 can induce antibodies cross-reacting with a large number of viral variants. EMBO J 17:3521–3533PubMedCrossRefGoogle Scholar
  81. 81.
    Larralde OG, Martinez R, Camacho F et al (2007) Identification of hepatitis A virus mimotopes by phage display, antigenicity and immunogenicity. J Virol Methods 140:49–58PubMedCrossRefGoogle Scholar
  82. 82.
    Schellekens GA, Lasonder E, Feijlbrief M et al (1994) Identification of the core residues of the epitope of a monoclonal antibody raised against glycoprotein D of herpes simplex virus type 1 by screening of a random peptide library. Eur J Immunol 24:3188–3193PubMedCrossRefGoogle Scholar
  83. 83.
    Steward MW, Stanley CM, Obeid OE (1995) A mimotope from a solid-phase peptide library induces a measles virus-neutralizing and protective antibody response. J Virol 69:7668–7673PubMedGoogle Scholar
  84. 84.
    Zwick MB, Bonnycastle LL, Menendez A et al (2001) Identification and characterization of a peptide that specifically binds the human, broadly neutralizing anti-human immunodeficiency virus type 1 antibody b12. J Virol 75:6692–6699PubMedCrossRefGoogle Scholar
  85. 85.
    Dorgham K, Dogan I, Bitton N et al (2005) Immunogenicity of HIV type 1 gp120 CD4 binding site phage mimotopes. AIDS Res Hum Retrovir 21:82–92PubMedCrossRefGoogle Scholar
  86. 86.
    Keller PM, Arnold BA, Shaw AR et al (1993) Identification of HIV vaccine candidate peptides by screening random phage epitope libraries. Virology 193:709–716PubMedCrossRefGoogle Scholar
  87. 87.
    Boots LJ, McKenna PM, Arnold BA et al (1997) Anti-human immunodeficiency virus type 1 human monoclonal antibodies that bind discontinuous epitopes in the viral glycoproteins can identify mimotopes from recombinant phage peptide display libraries. AIDS Res Hum Retrovir 13:1549–1559PubMedCrossRefGoogle Scholar
  88. 88.
    Scala G, Chen X, Liu W et al (1999) Selection of HIV-specific immunogenic epitopes by screening random peptide libraries with HIV-1-positive sera. J Immunol 162:6155–6161PubMedGoogle Scholar
  89. 89.
    Cohn M (1997) A new concept of immune specificity emerges from a consideration of the self-nonself discrimination. Cell Immunol 181:103–108PubMedCrossRefGoogle Scholar
  90. 90.
    Cohn M (2005) Degeneracy, mimicry and cross-reactivity in immune recognition. Mol Immunol 42:651–655PubMedCrossRefGoogle Scholar
  91. 91.
    Langman RE (2000) The specificity of immunological reactions. Mol Immunol 37:555–561PubMedCrossRefGoogle Scholar
  92. 92.
    Cohen IR, Hershberg U, Solomon S (2004) Antigen-receptor degeneracy and immunological paradigms. Mol Immunol 40:993–996PubMedCrossRefGoogle Scholar
  93. 93.
    Van Regenmortel MHV (1998) From absolute to exquisite specificity. Reflections on the fuzzy nature of species, specificity and antigenic sites. J Immunol Methods 216:37–48PubMedCrossRefGoogle Scholar
  94. 94.
    Mazumdar PH (1995) Species and specificity. Cambridge University Press, CambridgeGoogle Scholar
  95. 95.
    Landsteiner K (1947) The specificity of serological reactions. Harvard University Press, CambridgeGoogle Scholar
  96. 96.
    Talmadge DW (1959) Immunological specificity, unique combinations of selected natural globulins provide an alternative to the classical concept. Science 129:1643–1648CrossRefGoogle Scholar
  97. 97.
    Medawar PB, Medawar JS (1978) The life science. Granada Publishing, LondonGoogle Scholar
  98. 98.
    Bhattacharjee AK, Glaudemans CP (1978) Dual binding specificities in MOPC 384 and 870 murine myeloma immunoglobulins. J Immunol 120:411–413PubMedGoogle Scholar
  99. 99.
    Ramsland PA, Guddat LW, Edmundson AB, Raison RL (1997) Diverse binding site structures revealed in homology models of polyreactive immunoglobulins. J Comput Aided Mol Des 11:453–461PubMedCrossRefGoogle Scholar
  100. 100.
    James LC, Roversi P, Tawfik DS (2003) Antibody multi-specificity mediated by conformational diversity. Science 299:1362–1367PubMedCrossRefGoogle Scholar
  101. 101.
    Jimenez R, Salazar G, Baldridge KK, Romesberg FE (2003) Flexibility and molecular recognition in the immune system. Proc Natl Acad Sci USA 100:92–97PubMedCrossRefGoogle Scholar
  102. 102.
    Sperling R, Francus T, Siskind GW (1983) Degeneracy of antibody specificity. J Immunol 131:882–885PubMedGoogle Scholar
  103. 103.
    Parnes O (2004) From interception to incorporation: degeneracy and promiscuous recognition as precursors of a paradigm shift in immunology. Mol Immunol 40:985–991PubMedCrossRefGoogle Scholar
  104. 104.
    Wucherpfennig KW, Allen PM, Celada F et al (2007) Polyspecificity of T cell and B cell receptor recognition. Semin Immunol 19:216–224PubMedCrossRefGoogle Scholar
  105. 105.
    Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. PNAS 98:13763–13768PubMedCrossRefGoogle Scholar
  106. 106.
    Moodie SL, Mitchell JB, Thornton JM (1996) Protein recognition of adenylate: an example of a fuzzy recognition template. J Mol Biol 263:486–500PubMedCrossRefGoogle Scholar
  107. 107.
    Van Regenmortel MHV (1999) Molecular design versus empirical discovery in peptide based vaccines. Coming to terms with fuzzy recognition sites and ill-defined structure-function relationships in immunology. Vaccine 18:216–221PubMedCrossRefGoogle Scholar
  108. 108.
    McNeil D, Freiberger P (1993) Fuzzy logic. Simon and Schuster, New-YorkGoogle Scholar
  109. 109.
    Van Regenmortel MHV (2001) Pitfalls of reductionism in the design of peptide-based vaccines. Vaccine 19:2369–2374PubMedCrossRefGoogle Scholar
  110. 110.
    Sadegh-Zadeh K (2001) The fuzzy revolution: goodbye to the Aristotelian Weltanschauung. Artific Intell Med 21:1–25CrossRefGoogle Scholar
  111. 111.
    Leng Q, Bentwich Z (2002) Beyond self and nonself: fuzzy recognition of the immune system. Scand J Immunol 56:224–232PubMedCrossRefGoogle Scholar
  112. 112.
    Efroni S, Cohen IR (2002) Simplicity belies a complex system: a response to the minimal model of immunity of Langman and Cohn. Cell Immunol 216:23–30PubMedCrossRefGoogle Scholar
  113. 113.
    Sandberg JK, Franksson L, Sundbäck J et al (2000) T cell tolerance based on avidity thresholds rather than complete deletion allows maintenance of maximal repertoire diversity. J Immunol 165:25–33PubMedGoogle Scholar
  114. 114.
    Foote J, Eisen HN (1995) Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci USA 92:1254–1256PubMedCrossRefGoogle Scholar
  115. 115.
    Batista FD, Neuberger MS (1998) Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8:751–759PubMedCrossRefGoogle Scholar
  116. 116.
    Schroer JA, Bender T, Feldmann T, Kim KJ (1983) Mapping epitopes on the insulin molecule using monoclonal antibodies. Eur J Immunol 13:693–700PubMedCrossRefGoogle Scholar
  117. 117.
    Edwards BM, Barash SC, Main SH et al (2003) The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J Mol Biol 334:103–118PubMedCrossRefGoogle Scholar
  118. 118.
    Benjamin DC, Berzofsky JA, East IJ et al (1984) The antigenic structure of proteins: a reappraisal. Ann Rev Immunol 2:67–101CrossRefGoogle Scholar
  119. 119.
    Berzofsky JA (1985) Intrinsic and extrinsic factors in protein antigenic structure. Science 229:932–940PubMedCrossRefGoogle Scholar
  120. 120.
    Tilley SA, Honnen WJ, Racho ME et al (1992) Synergistic neutralization of HIV-1 by human monoclonal antibodies against the V3 loop and the CD4-binding site of gp120. AIDS Res Hum Retrovir 8:461–467PubMedCrossRefGoogle Scholar
  121. 121.
    Laal S, Burda S, Gorny MK et al (1994) Synergistic neutralization of human immunodeficiency virus type 1 by combinations of human monoclonal antibodies. J Virol 68:4001–4008PubMedGoogle Scholar
  122. 122.
    Zwick MB, Wang M, Poignard P et al (2001) Neutralization synergy of human immunodeficiency virus type 1 primary isolates by cocktails of broadly neutralizing antibodies. J Virol 75:12198–12208PubMedCrossRefGoogle Scholar
  123. 123.
    Zhou T, Xu L, Dey B, Hessell AJ et al (2007) Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445:732–737PubMedCrossRefGoogle Scholar
  124. 124.
    Zwick MB, Parren PW, Saphire EO et al (2003) Molecular features of the broadly neutralizing immunoglobulin G1 b12 required for recognition of human immunodeficiency virus type 1 gp120. J Virol 77:5863–5876PubMedCrossRefGoogle Scholar
  125. 125.
    Loor F (1971) On the existence of heterospecific antibodies in sera from rabbits immunized against tobacco mosaic virus determinants. Immunology 21:557–564PubMedGoogle Scholar
  126. 126.
    Al Moudallal Z, Briand JP, Van Regenmortel MHV (1982) Monoclonal antibodies as probes of the antigenic structure of tobacco mosaic virus. EMBO J 1:1005–1010PubMedGoogle Scholar
  127. 127.
    Underwood PA (1985) Theoretical considerations of the ability of monoclonal antibodies to detect antigenic differences between closely related variants, with particular reference to heterospecific reactions. J Immunol Methods 85:295–307PubMedCrossRefGoogle Scholar
  128. 128.
    Harper M, Lema F, Boulot G, Poljak RJ (1987) Antigen specificity and cross-reactivity of monoclonal anti lysozyme antibodies. Mol Immunol 24:97–108PubMedCrossRefGoogle Scholar
  129. 129.
    Van Regenmortel MHV (1967) Serological studies on naturally occurring strains and chemically induced mutants of tobacco mosaic virus. Virology 31:467–480PubMedCrossRefGoogle Scholar
  130. 130.
    Eisen HN (2001) Specificity and degeneracy in antigen recognition: Yin and Yang in the immune system. Ann Rev Immunol 19:1–21CrossRefGoogle Scholar
  131. 131.
    Berzofsky JA, Schechter AN (1981) The concepts of cross-reactivity and specificity in immunology. Mol Immunol 18:751–763PubMedCrossRefGoogle Scholar
  132. 132.
    Roberts VA, Getzoff ED, Tainer JA (1993) Structural basis of antigenic cross-reactivity. In: Van Regenmortel MHV (ed) Structure of antigens, vol 2. CRC Press, Boca Raton, pp 31–53Google Scholar
  133. 133.
    Timmerman P, Puijk WC, Meloen RH (2007) Functional reconstruction and synthetic mimicry of a conformational epitope using CLIPS technology. J Mol Recognit 20:283–299PubMedCrossRefGoogle Scholar
  134. 134.
    Pantophlet R, OllmannSaphire E, Poignard P et al (2003) Fine mapping of the interaction of neutralizing and nonneutralizing monoclonal antibodies with the CD4 binding site of human immunodeficiency virus type 1 gp120. J Virol 77:642–658PubMedCrossRefGoogle Scholar
  135. 135.
    Parren PW, Burton DR (2001) The antiviral activity of antibodies in vitro and in vivo. Adv Immunol 77:195–262PubMedCrossRefGoogle Scholar
  136. 136.
    Van Regenmortel MHV (2006) Immunoinformatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of synthetic peptide vaccines. J Mol Recognit 19:183–187PubMedCrossRefGoogle Scholar
  137. 137.
    Reading SA, Dimmock NJ (2007) Neutralization of animal virus infectivity by antibody. Arch Virol 152:1047–1059PubMedCrossRefGoogle Scholar
  138. 138.
    Burton DR, Pyati J, Koduri R et al (1994) Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266:1024–1027PubMedCrossRefGoogle Scholar
  139. 139.
    Kwong PD, Wyatt R, Robinson J et al (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659PubMedCrossRefGoogle Scholar
  140. 140.
    Labrijn AF, Poignard P, Raja A et al (2003) Access of antibody molecules to theconserved coreceptor binding site on glycoprotein gp120 is sterically restricted onprimary human immunodeficiency virus type 1. J Virol 77:10557–10565PubMedCrossRefGoogle Scholar
  141. 141.
    Decker JM, Bibollet-Ruche F, Wei X et al (2005) Antigenic conservation and immunogenicity of the HIV coreceptor binding site. J Exp Med 201:1407–1419PubMedCrossRefGoogle Scholar
  142. 142.
    Irving MB, Craig L, Menendez A et al (2010) Exploring peptide mimics for the production of antibodies against discontinuous protein epitopes. Mol Immunol 47:1137–1148PubMedCrossRefGoogle Scholar
  143. 143.
    Saphire EO, Montero M, Menendez A et al (2007) Structure of a high-affinity “Mimotope” peptide bound to HIV-1-neutralizing antibody b12 explains its inability to elicit gp120 cross-reactive antibodies. J Mol Biol 369:696–709PubMedCrossRefGoogle Scholar
  144. 144.
    Sattentau QJ, Moore JP (1995) Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J Exp Med 182:185–196PubMedCrossRefGoogle Scholar
  145. 145.
    Van Regenmortel MHV (2010) Antigenicity and immunogenicity of viral proteins. In: Mahy BWJ, Van Regenmortel MHV (eds) Desk encyclopedia of general virology. Academic Press, Elsevier, Oxford, pp 343–349Google Scholar
  146. 146.
    Berek C (1992) Maturation of the immune response. In: Van Regenmortel MHV (ed) Structure of antigens, vol 1. CRC Press, Boca Raton, pp 149–157Google Scholar
  147. 147.
    Harwood NE, Batista FD (2010) Early events in B cell activation. Ann Rev Immunol 28:185–210CrossRefGoogle Scholar
  148. 148.
    Rini JM, Schulze-Gahmen U, Wilson IA (1992) Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science 255:959–965PubMedCrossRefGoogle Scholar
  149. 149.
    Wilson IA, Stanfield RL (1994) Antigen-antibody interactions: new structures and new conformational changes. Curr Opin Struct Biol 4:857–867PubMedCrossRefGoogle Scholar
  150. 150.
    Berger C, Weber-Bornhauser S, Eggenberger J, Hanes J, Plückthun A, Bosshard HR (1999) Antigen recognition by conformational selection. FEBS Lett 450:149–153PubMedCrossRefGoogle Scholar
  151. 151.
    Bosshard HR (2001) Molecular recognition by induced fit: how fit is the concept? News Physiol Sci 16:171–173PubMedGoogle Scholar
  152. 152.
    Goh CS, Milburn D, Gerstein M (2004) Conformational changes associated with protein-protein interactions. Curr Opin Struct Biol 14:104–109PubMedCrossRefGoogle Scholar
  153. 153.
    Pantophlet R, Burton DR (2003) Immunofocusing: antigen engineering to promote the induction of HIV-neutralizing antibodies. Trends Mol Med 9:468–473PubMedCrossRefGoogle Scholar
  154. 154.
    Wu X, Yang ZY, Li Y, Hogerkorp CM et al (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:856–861PubMedCrossRefGoogle Scholar
  155. 155.
    Joyce JG, Hurni WM, Bogusky MJ et al (2002) Enhancement of alpha-helicity in the HIV-1 inhibitory peptide DP178 leads to an increased affinity for human monoclonal antibody 2F5 but does not elicit neutralizing responses in vitro. J Biol Chem 277:45811–45820PubMedCrossRefGoogle Scholar
  156. 156.
    Ho J, Uger RA, Zwick MB et al (2005) Conformational constraints imposed on a pan-neutralizing HIV-1 antibody epitope result in increased antigenicity but not neutralizing response. Vaccine 23:1559–1573PubMedCrossRefGoogle Scholar
  157. 157.
    Hans D, Young PR, Fairlie DP (2006) Current status of short synthetic peptides as vaccines. Med Chem 2:627–646PubMedGoogle Scholar
  158. 158.
    Thornton JM, Sibanda BL (1983) Amino and carboxy-terminal regions in globular proteins. J Mol Biol 167:443–460PubMedCrossRefGoogle Scholar
  159. 159.
    Westhof E, Altschuh D, Moras D et al (1984) Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature 311:123–126PubMedCrossRefGoogle Scholar
  160. 160.
    Tainer JA, Getzoff ED, Paterson Y et al (1985) The atomic mobility component of protein antigenicity. Ann Rev Immunol 3:501–535CrossRefGoogle Scholar
  161. 161.
    Pellequer J-L, Westhof E, Van Regenmortel MHV (1994) Epitope predictions from the primary structure of proteins. In: Wisdow GB (ed) Peptide antigens: a practical approach. JRL, Oxford, pp 7–25Google Scholar
  162. 162.
    Leinikki P, Lehtinen M, Hyöty H et al (1993) Synthetic peptides as diagnostic tools in virology. Adv Vir Res 42:149–186CrossRefGoogle Scholar
  163. 163.
    Walter G (1986) Production and use of antibodies against synthetic peptides. J Immunol Methods 88:149–161PubMedCrossRefGoogle Scholar
  164. 164.
    Muller S (1999) Use of antipeptide antibodies in molecular and cellular biology. In: Van Regenmortel MHV, Muller S (eds) Synthetic peptide as antigens. Elsevier Amsterdam, The Netherlands, pp 215–235CrossRefGoogle Scholar
  165. 165.
    Blythe MJ, Flower DR (2005) Benchmarking B cell epitope prediction: Under performance of existing methods. Protein Sci 14:246–248PubMedCrossRefGoogle Scholar
  166. 166.
    Caioli SE (2010) Benchmarking B-cell epitope prediction for the design of peptide-based vaccines: problems and prospects. J Biomed Biotechnol, vol 2010, article ID 910524, doi: 10.1155/2010/910524
  167. 167.
    Langeveld JP, Casal JI, Osterhaus AD et al (1994) First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs. J Virol 68:4506–4513PubMedGoogle Scholar
  168. 168.
    Bittle JL, Hougten RA, Alexander H et al (1982) Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 298:30–33PubMedCrossRefGoogle Scholar
  169. 169.
    Rowlands DJ, Clarke BE, Carroll AR et al (1983) Chemical basis of antigenic variation in foot-and-mouth disease virus. Nature 306:694–697PubMedCrossRefGoogle Scholar
  170. 170.
    Parry NR, Barnett PV, Ouldridge EJ et al (1989) Neutralizing epitopes of type O foot-and-mouth disease virus. II. Mapping three conformational sites with synthetic peptide reagents. J Gen Virol 70:1493–1503PubMedCrossRefGoogle Scholar
  171. 171.
    Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384PubMedCrossRefGoogle Scholar
  172. 172.
    Spear GR, Takefman DM, Sharpe S et al (1994) Antibodies to the HIV-1 V3 loop in serum from infected persons contribute a major proportion of immune effect or functions including complement activation, antibody binding, and neutralization. Virology 204:609–615PubMedCrossRefGoogle Scholar
  173. 173.
    Jiang X, Burke V, Totrov M et al (2010) Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol 17:955–961PubMedCrossRefGoogle Scholar
  174. 174.
    VanCott TC, Polonis VR, Loomis LD et al (1995) Differential role of V3-specific antibodies in neutralization assays involving primary and laboratory-adapted isolates of HIV type 1. AIDS Res Hum Retrovir 11:1379–1391PubMedCrossRefGoogle Scholar
  175. 175.
    Kayman SC, Wu Z, Revesz K et al (1994) Presentation of native epitopes in the V1/V2 and V3 regions of human immunodeficiency virus type 1gp120 by fusion glycoproteins containing isolated gp120 domains. J Virol 68:400–410PubMedGoogle Scholar
  176. 176.
    Gorny MK, Williams C, Volsky B et al (2006) Cross-clade neutralizing activity of human anti-V3 monoclonal antibodies derived from the cells of individuals infected with non-B clades of human immunodeficiency virus type. J Virol 80:6865–6872PubMedCrossRefGoogle Scholar
  177. 177.
    Stanfield R, Cabezas E, Satterthwait A et al (1999) Dual conformations for the HIV-1 gp120 V3 loop in complexes with different neutralizing fabs. Structure 7:131–142PubMedCrossRefGoogle Scholar
  178. 178.
    Rosen O, Chill J, Sharon M et al (2005) Induced fit in HIV-neutralizing antibody complexes: evidence for alternative conformations of the gp120 V3 loop and the molecular basis for broad neutralization. Biochemistry 44:7250–7258PubMedCrossRefGoogle Scholar
  179. 179.
    Mester B, Manor R, Mor A et al (2009) HIV-1 peptide vaccine candidates: selecting constrained V3 peptides with highest affinity to antibody 447–52D. Biochemistry 48:7867–7877PubMedCrossRefGoogle Scholar
  180. 180.
    Briand JP, Benkirane N, Guichard G et al (1997) A retro-inverso peptide corresponding to the GH loop of foot-and-mouth disease virus elicits high levels of long-lasting protective neutralizing antibodies. Proc Natl Acad Sci USA 94:12545–12550PubMedCrossRefGoogle Scholar
  181. 181.
    Carver JA, Esposito G, Viglino P et al (1997) Structural comparison between retro-inverso and parent peptides: molecular basis for the biological activity of a retro-inverso analogue of the immunodominant fragment of VP1 coat protein from foot-and-mouth disease virus. Biopolymers 41:569–589PubMedCrossRefGoogle Scholar
  182. 182.
    Nargi F, Kramer E, Mezencio J et al (1999) Protection of swine from foot-and-mouth disease with one dose of an all-D retro peptide. Vaccine 17:2888–2893PubMedCrossRefGoogle Scholar
  183. 183.
    Hilleman MR (1992) Impediments, imponderables and alternatives in the attempt to develop an effective vaccine against AIDS. Vaccine 10:1053–1058PubMedCrossRefGoogle Scholar
  184. 184.
    Kusters I, Almond JW (2010) Vaccine strategies. In: Mahy BWJ, Van Regenmortel MHV (eds) Desk encyclopedia of general virology. Academic Press, Elsevier, Oxford, pp 381–389Google Scholar
  185. 185.
    Virgin HW, Walker BD (2010) Immunology and the elusive AIDS vaccine. Nature 464:224–231PubMedCrossRefGoogle Scholar
  186. 186.
    Scheid JF, Mouquet H, Feldhahn N et al (2009) Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458:636–640PubMedCrossRefGoogle Scholar
  187. 187.
    Walker LM, Phogat SK, Chan-Hui P et al (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326:285–289PubMedCrossRefGoogle Scholar
  188. 188.
    Corti D, Langedijk JP, Hinz A et al (2010) Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS one 5:e8805PubMedCrossRefGoogle Scholar
  189. 189.
    Mascola JR, Montefiori DC (2010) The role of antibodies in HIV vaccines. Annu Rev Immunol 28:413–444PubMedCrossRefGoogle Scholar
  190. 190.
    Nara PL, Garrity R (1998) Deceptive imprinting: a cosmopolitan strategy for complicating vaccination. Vaccine 16:1780–1787PubMedCrossRefGoogle Scholar
  191. 191.
    Tobin GJ, Trujillo JD, Bushnell RV et al (2008) Deceptive imprinting and immune refocusing in vaccine design. Vaccine 26:6189–6199PubMedCrossRefGoogle Scholar
  192. 192.
    Lu S, Wyatt R, Richmond JF et al (1998) Immunogenicity of DNA vaccines expressing human immunodeficiency virus type 1 envelope glycoprotein with and without deletions in the V1/2 and V3 regions. AIDS Res Hum Retrovir 14:151–155PubMedCrossRefGoogle Scholar
  193. 193.
    Kim YB, Han DP, Cao C, Cho MW (2003) Immunogenicity and ability of variable loop-deleted human immunodeficiency virus type 1 envelope glycoproteins to elicit neutralizing antibodies. Virology 305:124–137PubMedCrossRefGoogle Scholar
  194. 194.
    Gaschen B, Taylor J, Yusim K et al (2002) Diversity considerations in HIV-1 vaccine selection. Science 296:2354–2360PubMedCrossRefGoogle Scholar
  195. 195.
    McBurney SP, Ross TM (2009) Human immunodeficiency virus-like particles with consensus envelopes elicited broader cell-mediated peripheral and mucosal immune responses than polyvalent and monovalent Env vaccines. Vaccine 27:4337–4349PubMedCrossRefGoogle Scholar
  196. 196.
    Gras-Masse H, Georges B, Estaquier J et al (1999) Convergent peptide libraries, or mixotopes, to elicit or to identify specific immune responses. Curr Opin Immunol 11:223–228PubMedCrossRefGoogle Scholar
  197. 197.
    Korber B, Gnanakaran S (2009) The implications of patterns in HIV diversity for neutralizing antibody induction and susceptibility. Curr Opin HIV AIDS 4:408–417PubMedCrossRefGoogle Scholar
  198. 198.
    Pantophlet R, Aguilar-Sino RO, Wrin T et al (2007) Analysis of the neutralization breadth of the anti-V3 antibody F425–B4e8 and re-assessment of its epitope fine specificity by scanning mutagenesis. Virology 364:441–453PubMedCrossRefGoogle Scholar
  199. 199.
    Bramwell VW, Perrie Y (2005) The rational design of vaccines. Drug Disc Today 10:1527–1534CrossRefGoogle Scholar
  200. 200.
    D’Argenio DA, Wilson CB (2010) A decade of vaccines: Integrating immunology and vaccinology for rational vaccine design. Immunity 33:437–440PubMedCrossRefGoogle Scholar
  201. 201.
    McElrath MJ, Haynes BF (2010) Induction of immunity to human immunodeficiency virus type-1 by vaccination. Immunity 33:542–554PubMedCrossRefGoogle Scholar
  202. 202.
    Sette A, Rappuoli R (2010) Reverse vaccinology: vaccines in the era of genomics. Immunity 33:530–541PubMedCrossRefGoogle Scholar
  203. 203.
    Obeid OE, Partidos CD, Howard CR, Steward MW (1995) Protection against morbillivirus-induced encephalitis by immunization with a rationally designed synthetic peptide vaccine containing B- and T-cell epitopes from the fusion protein of measles virus. J Virol 69:1420–1428PubMedGoogle Scholar
  204. 204.
    Bunge M (1993) Philosophical dictionary. Prometheus Books, Amherst, New YorkGoogle Scholar
  205. 205.
    Van Regenmortel MHV (2007) The rational design of biological complexity: a deceptive metaphor. Proteomics 7:965–975PubMedCrossRefGoogle Scholar
  206. 206.
    Van Regenmortel MHV (2002) Reductionism and the search for structure-function relationships in antibody molecules. J Mol Recognit 15:240–247PubMedCrossRefGoogle Scholar
  207. 207.
    Zhou T, Georgiev I, Wu X et al (2010) Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329:811–817PubMedCrossRefGoogle Scholar
  208. 208.
    Binley JM, Lybarger EA, Crooks ET et al (2008) Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J Virol 82:11651–11658PubMedCrossRefGoogle Scholar
  209. 209.
    Gray ES, Taylor N, Wycuff D et al (2009) Antibody specificities associated with neutralization breadth in plasma from human immunodeficiency virus type 1 subtype C-infected blood donors. J Virol 83:8925–8937PubMedCrossRefGoogle Scholar
  210. 210.
    Burton DR, Weiss RA (2010) A boost for HIV vaccine design. Science 329:770–773PubMedCrossRefGoogle Scholar
  211. 211.
    Ebensen T, Guzmàn CA (2008) Immune modulators with defined molecular targets: cornerstone to optimize rational vaccine design. Hum Vaccin 4:13–22PubMedCrossRefGoogle Scholar
  212. 212.
    Tobin MB, Gustafsson C, Huisman GW (2000) Directed evolution: the ‘rational’ basis for ‘irrational’ design. Curr Opin Struct Biol 10:421–427PubMedCrossRefGoogle Scholar
  213. 213.
    Villén J, Rodríguez-Mias RA, Núñez JI et al (2006) Rational dissection of binding surfaces for mimicking of discontinuous antigenic sites. Chem Biol 13:815–823PubMedCrossRefGoogle Scholar
  214. 214.
    Poropatich K, Sullivan DJ Jr (2011) Human immunodeficiency virus type 1 long-term non-progressors: the viral, genetic and immunological basis for disease non-progression. J Gen Virol 92:247–268PubMedCrossRefGoogle Scholar
  215. 215.
    Okulicz JF, Marconi VC, Landrum ML et al (2009) Clinical outcomes of elite controllers, viremic controllers, and long-term nonprogressors in the US Department of Defense HIV natural history study. J Infect Dis 200:1714–1723PubMedCrossRefGoogle Scholar
  216. 216.
    Simek MD, Rida W, Priddy FH et al (2009) Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J Virol 83:7337–7348PubMedCrossRefGoogle Scholar
  217. 217.
    Mascola JR (1999) Herpes simplex virus vaccines–why don’t antibodies protect? J Am Med Assoc 281:379–380CrossRefGoogle Scholar
  218. 218.
    Pulendran B, Li S, Nakaya HI (2010) System vaccinology. Immunity 33:516–529PubMedCrossRefGoogle Scholar
  219. 219.
    García F, Climent N, Assoumou L et al (2011) A therapeutic dendritic cell-based vaccine for HIV-1 infection. J Infect Dis 203:473–478PubMedCrossRefGoogle Scholar
  220. 220.
    Li JZ, Brumme ZL, Brumme CJ et al (2011) Factors associated with viral rebound in HIV-1-infected individuals enrolled in a therapeutic HIV-1 gag vaccine trial. J Infect Dis 203:976–983PubMedCrossRefGoogle Scholar
  221. 221.
    Corey L, Nabel GJ, Dieffenbach C et al (2011) HIV-1 vaccines and adaptive trial designs. Sci Trans Med 3: 79ps13Google Scholar
  222. 222.
    Burton DR, Desrosiers RC, Doms RW et al (2004) A sound rationale needed for phase III HIV-1 vaccine trials. Science 303:316PubMedCrossRefGoogle Scholar
  223. 223.
    McNeil JG, Johnston MI, Birx DL, Tramont EC (2004) HIV vaccine trial justified. Science 303:961PubMedCrossRefGoogle Scholar
  224. 224.
    Belshe R, Franchini G, Girard MP et al (2004) Support for the RV144 HIV vaccine trial. Science 305:177–180PubMedCrossRefGoogle Scholar
  225. 225.
    Jefferys R, Harrington M (2004) Outstanding questions on HIV vaccine trial. Science 305:180PubMedCrossRefGoogle Scholar
  226. 226.
    Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. New Engl J Med 361:2209–2220PubMedCrossRefGoogle Scholar
  227. 227.
    Letvin NL (2009) Moving forward in HIV vaccine development. Science 326:1196–1198PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Stellenbosch Institute of Advanced Study (STIAS)Wallenberg Research Center at Stellenbosch UniversityStellenboschSouth Africa
  2. 2.CNRS/UDS UMR7242, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS)Université de StrasbourgIllkirchFrance

Personalised recommendations