Archives of Virology

, Volume 156, Issue 12, pp 2163–2172 | Cite as

Investigations on the RNA binding and phosphorylation of groundnut bud necrosis virus nucleocapsid protein

  • Amruta S. Bhat
  • H. S. SavithriEmail author
Original Article


Groundnut bud necrosis virus belongs to the genus Tospovirus, infects a wide range of crop plants and causes severe losses. To understand the role of the nucleocapsid protein in the viral life cycle, the protein was overexpressed in E. coli and purified by Ni-NTA chromatography. The purified N protein was well folded and was predominantly alpha-helical. Deletion analysis revealed that the C-terminal unfolded region of the N protein was involved in RNA binding. Furthermore, the N protein could be phosphorylated in vitro by Nicotiana benthamiana plant sap and by purified recombinant kinases such as protein kinase CK2 and calcium-dependent protein kinase. This is the first report of phoshphorylation of a nucleocapsid protein in the family Bunyaviridae. The possible implications of the present findings for the viral life cycle are discussed.


Infectious Bronchitis Virus Tomato Spotted Wilt Virus Nucleocapsid Protein Viral Life Cycle Rift Valley Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Groundnut bud necrosis virus


Tomato spotted wilt virus



N protein

Nucleocapsid protein


Protein kinase CK2


Calcium-dependent protein kinase



We thank the Department of Biotechnology (DBT) and Department of Science and Technology, New Delhi, India for financial support. ASB acknowledges DBT for a postdoctoral fellowship. We are grateful to Prof. Kristiina Makinen, University of Helsinki, for providing the tobacco CK2 clone. We thank Mr. Ajay and Prof. C. Jayabaskaran, IISc, for a gift of purified recombinant chickpea CDPK.

Supplementary material

705_2011_1110_MOESM1_ESM.pdf (26 kb)
Supplementary material 1 (PDF 25 kb)
705_2011_1110_MOESM2_ESM.pdf (43 kb)
Supplementary material 2 (PDF 43 kb)
705_2011_1110_MOESM3_ESM.pdf (54 kb)
Supplementary material 3 (PDF 53 kb)


  1. 1.
    Adkins S, Quadt R, Choi TJ, Ahlquist P, German T (1995) An RNA-dependent RNA polymerase activity associated with virions of tomato spotted wilt virus, a plant- and insect-infecting bunyavirus. Virology 207:308–311PubMedCrossRefGoogle Scholar
  2. 2.
    Albertini AA, Wernimont AK, Muziol T, Ravelli RB, Clapier CR, Schoehn G, Weissenhorn W, Ruigrok RW (2006) Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313:360–363PubMedCrossRefGoogle Scholar
  3. 3.
    Blakqori G, Kochs G, Haller O, Weber F (2003) Functional L polymerase of La Crosse virus allows in vivo reconstitution of recombinant nucleocapsids. J Gen Virol 84:1207–1214PubMedCrossRefGoogle Scholar
  4. 4.
    Chang CK, Hsu YL, Chang YH, Chao FA, Wu MC, Huang YS, Hu CK, Huang TH (2009) Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. J Virol 83:2255–2264PubMedCrossRefGoogle Scholar
  5. 5.
    Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen P (2000) The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci 25:596–601PubMedCrossRefGoogle Scholar
  7. 7.
    Elton D, Medcalf L, Bishop K, Harrison D, Digard P (1999) Identification of amino acid residues of influenza virus nucleoprotein essential for RNA binding. J Virol 73:7357–7367PubMedGoogle Scholar
  8. 8.
    Fauquet CM, Mayo MA, Maniloff J, Desselberges U, Ball LA (2005) Virus taxonomy eighth report of the international committee on taxonomy of viruses. Academic Press, San DiegoGoogle Scholar
  9. 9.
    Gowda S, Satyanarayana T, Naidu RA, Mushegian A, Dawson WO, Reddy DVR (1998) Characterization of the large (L) RNA of peanut bud necrosis tospovirus. Arch Virol 143:2381–2390PubMedCrossRefGoogle Scholar
  10. 10.
    Green TJ, Zhang X, Wertz GW, Luo M (2006) Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 313:357–360PubMedCrossRefGoogle Scholar
  11. 11.
    Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890PubMedCrossRefGoogle Scholar
  12. 12.
    Hagiwara K, Sato H, Inoue Y, Watanabe A, Yoneda M, Ikeda F, Fujita K, Fukuda H, Takamura C, Kozuka-Hata H, Oyama M, Sugano S, Ohmi S, Kai C (2008) Phosphorylation of measles virus nucleoprotein upregulates the transcriptional activity of minigenomic RNA. Proteomics 8:1871–1879PubMedCrossRefGoogle Scholar
  13. 13.
    Hale BG, Knebel A, Botting CH, Galloway CS, Precious BL, Jackson D, Elliott RM, Randall RE (2009) CDK/ERK-mediated phosphorylation of the human influenza A virus NS1 protein at threonine-215. Virology 383:6–11PubMedCrossRefGoogle Scholar
  14. 14.
    Hathaway GM, Lubben TH, Traugh JA (1980) Inhibition of casein kinase II by heparin. J Biol Chem 255:8038–8041PubMedGoogle Scholar
  15. 15.
    Hemalatha V, Gangatirkar P, Karande AA, Krishnareddy M, Savithri HS (2008) Monoclonal antibodies to the recombinant nucleocapsid protein of a groundnut bud necrosis virus infecting tomato in Karnataka and their use in profiling the epitopes of Indian tospovirus isolates. Current science 95:952–957Google Scholar
  16. 16.
    Ivanov KI, Puustinen P, Merits A, Saarma M, Makinen K (2001) Phosphorylation down-regulates the RNA binding function of the coat protein of potato virus A. J Biol Chem 276:13530–13540PubMedGoogle Scholar
  17. 17.
    Ivanov KI, Puustinen P, Gabrenaite R, Vihinen H, Ronnstrand L, Valmu L, Kalkkinen N, Makinen K (2003) Phosphorylation of the potyvirus capsid protein by protein kinase CK2 and its relevance for virus infection. Plant Cell 15:2124–2139PubMedCrossRefGoogle Scholar
  18. 18.
    Kaukinen P, Vaheri A, Plyusnin A (2005) Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. Arch Virol 150:1693–1713PubMedCrossRefGoogle Scholar
  19. 19.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  20. 20.
    Lakowicz JR, Eftink MR (2002) Intrinsic fluorescence of proteins. In: Geddes CD, Lakowicz JR (eds) Topics in fluorescence spectroscopy. Springer, US, pp 1–15CrossRefGoogle Scholar
  21. 21.
    Law LM, Everitt JC, Beatch MD, Holmes CF, Hobman TC (2003) Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J Virol 77:1764–1771PubMedCrossRefGoogle Scholar
  22. 22.
    Lee J, Rudd JJ (2002) Calcium-dependent protein kinases: versatile plant signalling components necessary for pathogen defence. Trends Plant Sci 7:97–98PubMedCrossRefGoogle Scholar
  23. 23.
    Lokesh B, Rashmi PR, Amruta BS, Srisathiyanarayanan D, Murthy MR, Savithri HS (2010) NSs encoded by groundnut bud necrosis virus is a bifunctional enzyme. PLoS One 5:e9757PubMedCrossRefGoogle Scholar
  24. 24.
    Longhi S (2009) Nucleocapsid structure and function. Curr Top Microbiol Immunol 329:103–128PubMedCrossRefGoogle Scholar
  25. 25.
    Mir MA, Panganiban AT (2006) The bunyavirus nucleocapsid protein is an RNA chaperone: possible roles in viral RNA panhandle formation and genome replication. RNA 12:272–282PubMedCrossRefGoogle Scholar
  26. 26.
    Mir MA, Panganiban AT (2008) A protein that replaces the entire cellular eIF4F complex. EMBO J 27:3129–3139PubMedCrossRefGoogle Scholar
  27. 27.
    Mohl BP, Barr JN (2009) Investigating the specificity and stoichiometry of RNA binding by the nucleocapsid protein of Bunyamwera virus. RNA 15:391–399PubMedCrossRefGoogle Scholar
  28. 28.
    Niefind K, Putter M, Guerra B, Issinger OG, Schomburg D (1999) GTP plus water mimic ATP in the active site of protein kinase CK2. Nat Struct Biol 6:1100–1103PubMedCrossRefGoogle Scholar
  29. 29.
    Ontiveros SJ, Li Q, Jonsson CB (2010) Modulation of apoptosis and immune signaling pathways by the Hantaan virus nucleocapsid protein. Virology. doi: 10.1016/j.virol.2010.1002.1018
  30. 30.
    Pappu HR, Jones RA, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141:219–236PubMedCrossRefGoogle Scholar
  31. 31.
    Peng TY, Lee KR, Tarn WY (2008) Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization. FEBS J 275:4152–4163PubMedCrossRefGoogle Scholar
  32. 32.
    Raymond DD, Piper ME, Gerrard SR, Smith JL (2010) Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation. Proc Natl Acad Sci USA 107:11769–11774PubMedCrossRefGoogle Scholar
  33. 33.
    Ribeiro D, Borst JW, Goldbach R, Kormelink R (2009) Tomato spotted wilt virus nucleocapsid protein interacts with both viral glycoproteins Gn and Gc in planta. Virology 383:121–130PubMedCrossRefGoogle Scholar
  34. 34.
    Richmond KE, Chenault K, Sherwood JL, German TL (1998) Characterization of the nucleic acid binding properties of tomato spotted wilt virus nucleocapsid protein. Virology 248:6–11PubMedCrossRefGoogle Scholar
  35. 35.
    Satyanarayana T, Mitchell SE, Reddy DV, Brown S, Kresovich S, Jarret R, Naidu RA, Demski JW (1996) Peanut bud necrosis tospovirus S RNA: complete nucleotide sequence, genome organization and homology to other tospoviruses. Arch Virol 141:85–98PubMedCrossRefGoogle Scholar
  36. 36.
    Satyanarayana T, Mitchell SE, Reddy DV, Kresovich S, Jarret R, Naidu RA, Gowda S, Demski JW (1996) The complete nucleotide sequence and genome organization of the M RNA segment of peanut bud necrosis tospovirus and comparison with other tospoviruses. J Gen Virol 77:2347–2352PubMedCrossRefGoogle Scholar
  37. 37.
    Snippe M, Borst JW, Goldbach R, Kormelink R (2005) The use of fluorescence microscopy to visualise homotypic interactions of tomato spotted wilt virus nucleocapsid protein in living cells. J Virol Methods 125:15–22PubMedCrossRefGoogle Scholar
  38. 38.
    Snippe M, Goldbach R, Kormelink R (2005) Tomato spotted wilt virus particle assembly and the prospects of fluorescence microscopy to study protein-protein interactions involved. Adv Virus Res 65:63–120PubMedCrossRefGoogle Scholar
  39. 39.
    Soellick T, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci USA 97:2373–2378PubMedCrossRefGoogle Scholar
  40. 40.
    Spencer KA, Dee M, Britton P, Hiscox JA (2008) Role of phosphorylation clusters in the biology of the coronavirus infectious bronchitis virus nucleocapsid protein. Virology 370:373–381PubMedCrossRefGoogle Scholar
  41. 41.
    Surjit M, Lal SK (2008) The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infect Genet Evol 8:397–405PubMedCrossRefGoogle Scholar
  42. 42.
    Uhrig JF, Soellick TR, Minke CJ, Philipp C, Kellmann JW, Schreier PH (1999) Homotypic interaction and multimerization of nucleocapsid protein of tomato spotted wilt tospovirus: identification and characterization of two interacting domains. Proc Natl Acad Sci USA 96:55–60PubMedCrossRefGoogle Scholar
  43. 43.
    Vulliemoz D, Roux L (2001) “Rule of six”: how does the Sendai virus RNA polymerase keep count? J Virol 75:4506–4518PubMedCrossRefGoogle Scholar
  44. 44.
    Xu X, Severson W, Villegas N, Schmaljohn CS, Jonsson CB (2002) The RNA binding domain of the hantaan virus N protein maps to a central, conserved region. J Virol 76:3301–3308PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of BiochemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations