Archives of Virology

, 156:1917

Avian reovirus S1133-induced DNA damage signaling and subsequent apoptosis in cultured cells and in chickens

  • Ping-Yuan Lin
  • Hung-Jen Liu
  • Ching-Dong Chang
  • Chi-I Chang
  • Jue-Liang Hsu
  • Ming-Huei Liao
  • Jeng-Woei Lee
  • Wen-Ling Shih
Original Article

Abstract

In this study, intracellular signaling in ARV S1133-mediated apoptosis was investigated. A microarray was used to examine the gene expression profiles of cells upon ARV S1133 infection and ARV-encoded pro-apoptotic protein σC overexpression. The analysis indicated that in the set of DNA-damage-responsive genes, DDIT-3 and GADD45α were both upregulated by viral infection and σC overexpression. Further investigation demonstrated that both treatments caused DNA breaks, which increased the expression and/or phosphorylation of DNA damage response proteins. ROS and lipid peroxidation levels were increased, and ARV S1133 and σC caused apoptosis mediated by DNA damage signaling. ROS scavenger NAC, caffeine and an ATM-specific inhibitor significantly reduced ARV S1133- and σC-induced DNA breaks, DDIT-3 and GADD45α expression, H2AX phosphorylation, and apoptosis. Overexpression of DDIT-3 and GADD45α enhanced the oxidative stress and apoptosis induced by ARV S1133 and σC. In conclusion, our results demonstrate the involvement of the DNA-damage-signaling pathway in ARV S1133- and σC-induced apoptosis.

References

  1. 1.
    Benavente J, Martinez-Costas J (2007) Avian reovirus: structure and biology. Virus Res 123:105–119PubMedCrossRefGoogle Scholar
  2. 2.
    Bodelon G, Labrada L, Martinez-Costas J, Benavente J (2002) Modification of late membrane permeability in avian reovirus-infected cells: viroporin activity of the S1-encoded nonstructural p10 protein. J Biol Chem 277:17789–17796PubMedCrossRefGoogle Scholar
  3. 3.
    Brenner B, Koppenhoefer U, Weinstock C, Linderkamp O, Lang F, Gulbins E (1997) Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem 272:22173–22181PubMedCrossRefGoogle Scholar
  4. 4.
    Brune B, Zhou J, von Knethen A (2003) Nitric oxide, oxidative stress, and apoptosis. Kidney Int Suppl:S22–S24Google Scholar
  5. 5.
    Carriere A, Carmona MC, Fernandez Y, Rigoulet M, Wenger RH, Penicaud L, Casteilla L (2004) Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J Biol Chem 279:40462–40469PubMedCrossRefGoogle Scholar
  6. 6.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedCrossRefGoogle Scholar
  7. 7.
    Chan SW, Egan PA (2005) Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response. FASEB J 19:1510–1512PubMedGoogle Scholar
  8. 8.
    Chen YT, Lin CH, Ji WT, Li SK, Liu HJ (2008) Proteasome inhibition reduces avian reovirus replication and apoptosis induction in cultured cells. J Virol Methods 151:95–100PubMedCrossRefGoogle Scholar
  9. 9.
    Choi J, Ou JH (2006) Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol 290:G847–G851PubMedCrossRefGoogle Scholar
  10. 10.
    Chulu JL, Lee LH, Lee YC, Liao SH, Lin FL, Shih WL, Liu HJ (2007) Apoptosis induction by avian reovirus through p53 and mitochondria-mediated pathway. Biochem Biophys Res Commun 356:529–535PubMedCrossRefGoogle Scholar
  11. 11.
    Chulu JL, Huang WR, Wang L, Shih WL, Liu HJ (2010) Avian reovirus non-structural protein p17-induced G2/M cell cycle arrest and host cellular protein translation shutoff involve activation of p53-dependent pathways. J Virol 84:7683–7694PubMedCrossRefGoogle Scholar
  12. 12.
    Desmyter J, Melnick JL, Rawls WE (1968) Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero). J Virol 2:955–961PubMedGoogle Scholar
  13. 13.
    Du F, Wang L, Zhang Y, Jiang W, Sheng H, Cao Q, Wu J, Shen B, Shen T, Zhang JZ, Bao C, Li D, Li N (2008) Role of GADD45 beta in the regulation of synovial fluid T cell apoptosis in rheumatoid arthritis. Clin Immunol 128:238–247PubMedCrossRefGoogle Scholar
  14. 14.
    Flory E, Kunz M, Scheller C, Jassoy C, Stauber R, Rapp UR, Ludwig S (2000) Influenza virus-induced NF-kappaB-dependent gene expression is mediated by overexpression of viral proteins and involves oxidative radicals and activation of IkappaB kinase. J Biol Chem 275:8307–8314PubMedCrossRefGoogle Scholar
  15. 15.
    Fontanier-Razzaq N, McEvoy TG, Robinson JJ, Rees WD (2001) DNA damaging agents increase gadd153 (CHOP-10) messenger RNA levels in bovine preimplantation embryos cultured in vitro. Biol Reprod 64:1386–1391PubMedCrossRefGoogle Scholar
  16. 16.
    Friedman AD (1996) GADD153/CHOP, a DNA damage-inducible protein, reduced CAAT/enhancer binding protein activities and increased apoptosis in 32D c13 myeloid cells. Cancer Res 56:3250–3256PubMedGoogle Scholar
  17. 17.
    Gargouri B, Van Pelt J, El Feki Ael F, Attia H, Lassoued S (2009) Induction of Epstein-Barr virus (EBV) lytic cycle in vitro causes oxidative stress in lymphoblastoid B cell lines. Mol Cell Biochem 324:55–63PubMedCrossRefGoogle Scholar
  18. 18.
    Gouvea V, Schnitzer TJ (1982) Pathogenicity of avian reoviruses: examination of six isolates and a vaccine strain. Infect Immun 38:731–738PubMedGoogle Scholar
  19. 19.
    Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C, Christians FC, Ellisen LW, Maheswaran S, Oliner JD, Haber DA (1999) Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97:575–586PubMedCrossRefGoogle Scholar
  20. 20.
    Hsieh YH, Su IJ, Wang HC, Chang WW, Lei HY, Lai MD, Chang WT, Huang W (2004) Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis 25:2023–2032PubMedCrossRefGoogle Scholar
  21. 21.
    Hsu CJ, Wang CY, Lee LH, Shih WL, Chang CI, Cheng HL, Chulu JL, Ji WT, Liu HJ (2006) Development and characterization of monoclonal antibodies against avian reovirus sigma C protein and their application in detection of avian reovirus isolates. Avian Pathol 35:320–326PubMedCrossRefGoogle Scholar
  22. 22.
    Jones RC, Kibenge FS (1984) Reovirus-induced tenosynovitis in chickens: the effect of breed. Avian Pathol 13:511–528PubMedCrossRefGoogle Scholar
  23. 23.
    Kannan R, Gukasyan HJ, Zhang W, Trousdale MD, Kim KJ, Lee VH (2004) Impairment of conjunctival glutathione secretion and ion transport by oxidative stress in an adenovirus type 5 ocular infection model of pigmented rabbits. Free Radic Biol Med 37:229–238PubMedCrossRefGoogle Scholar
  24. 24.
    Kavouras JH, Prandovszky E, Valyi-Nagy K, Kovacs SK, Tiwari V, Kovacs M, Shukla D, Valyi-Nagy T (2007) Herpes simplex virus type 1 infection induces oxidative stress and the release of bioactive lipid peroxidation by-products in mouse P19N neural cell cultures. J Neurovirol 13:416–425PubMedCrossRefGoogle Scholar
  25. 25.
    Kuo YF, Su YZ, Tseng YH, Wang SY, Wang HM, Chueh PJ (2010) Flavokawain B, a novel chalcone from Alpinia pricei Hayata with potent apoptotic activity: Involvement of ROS and GADD153 upstream of mitochondria-dependent apoptosis in HCT116 cells. Free Radic Biol Med 49:214–226PubMedCrossRefGoogle Scholar
  26. 26.
    Labrada L, Bodelon G, Vinuela J, Benavente J (2002) Avian reoviruses cause apoptosis in cultured cells: viral uncoating, but not viral gene expression, is required for apoptosis induction. J Virol 76:7932–7941PubMedCrossRefGoogle Scholar
  27. 27.
    Lassoued S, Ben Ameur R, Ayadi W, Gargouri B, Ben Mansour R, Attia H (2008) Epstein-Barr virus induces an oxidative stress during the early stages of infection in B lymphocytes, epithelial, and lymphoblastoid cell lines. Mol Cell Biochem 313:179–186PubMedCrossRefGoogle Scholar
  28. 28.
    Lawrence MC, McGlynn K, Naziruddin B, Levy MF, Cobb MH (2007) Differential regulation of CHOP-10/GADD153 gene expression by MAPK signaling in pancreatic beta-cells. Proc Natl Acad Sci USA 104:11518–11525PubMedCrossRefGoogle Scholar
  29. 29.
    Leutner S, Eckert A, Muller WE (2001) ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. J Neural Transm 108:955–967PubMedCrossRefGoogle Scholar
  30. 30.
    Lin CH, Shih WL, Lin FL, Hsieh YC, Kuo YR, Liao MH, Liu HJ (2009) Bovine ephemeral fever virus-induced apoptosis requires virus gene expression and activation of Fas and mitochondrial signaling pathway. Apoptosis 14:864–877PubMedCrossRefGoogle Scholar
  31. 31.
    Lin HY, Chuang ST, Chen YT, Shih WL, Chang CD, Liu HJ (2007) Avian reovirus-induced apoptosis related to tissue injury. Avian Pathol 36:155–159PubMedCrossRefGoogle Scholar
  32. 32.
    Lin PY, Liu HJ, Liao MH, Chang CD, Chang CI, Cheng HL, Lee JW, Shih WL (2010) Activation of PI 3-kinase/Akt/NF-kappaB and Stat3 signaling by avian reovirus S1133 in the early stages of infection results in an inflammatory response and delayed apoptosis. Virology 400:104–114PubMedCrossRefGoogle Scholar
  33. 33.
    Lin YL, Liu CC, Chuang JI, Lei HY, Yeh TM, Lin YS, Huang YH, Liu HS (2000) Involvement of oxidative stress, NF-IL-6, and RANTES expression in dengue-2-virus-infected human liver cells. Virology 276:114–126PubMedCrossRefGoogle Scholar
  34. 34.
    Lu HF, Hsueh SC, Ho YT, Kao MC, Yang JS, Chiu TH, Huamg SY, Lin CC, Chung JG (2007) ROS mediates baicalin-induced apoptosis in human promyelocytic leukemia HL-60 cells through the expression of the Gadd153 and mitochondrial-dependent pathway. Anticancer Res 27:117–125PubMedGoogle Scholar
  35. 35.
    Martinez-Costas J, Gonzalez-Lopez C, Vakharia VN, Benavente J (2000) Possible involvement of the double-stranded RNA-binding core protein sigmaA in the resistance of avian reovirus to interferon. J Virol 74:1124–1131PubMedCrossRefGoogle Scholar
  36. 36.
    Mayerhofer T, Kodym R (2003) Gadd153 restores resistance to radiation-induced apoptosis after thiol depletion. Biochem Biophys Res Commun 310:115–120PubMedCrossRefGoogle Scholar
  37. 37.
    Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J (1982) Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res 42:3858–3863PubMedGoogle Scholar
  38. 38.
    Ni Y, Kemp MC (1995) A comparative study of avian reovirus pathogenicity: virus spread and replication and induction of lesions. Avian Dis 39:554–566PubMedCrossRefGoogle Scholar
  39. 39.
    Nicolini A, Ajmone-Cat MA, Bernardo A, Levi G, Minghetti L (2001) Human immunodeficiency virus type-1 Tat protein induces nuclear factor (NF)-kappaB activation and oxidative stress in microglial cultures by independent mechanisms. J Neurochem 79:713–716PubMedCrossRefGoogle Scholar
  40. 40.
    Norbury CJ, Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23:2797–2808PubMedCrossRefGoogle Scholar
  41. 41.
    Olive PL, Banath JP (2009) Kinetics of H2AX phosphorylation after exposure to cisplatin. Cytometry B Clin Cytom 76:79–90PubMedGoogle Scholar
  42. 42.
    Pal S, Polyak SJ, Bano N, Qiu WC, Carithers RL, Shuhart M, Gretch DR, Das A (2010) Hepatitis C virus induces oxidative stress, DNA damage and modulates the DNA repair enzyme NEIL1. J Gastroenterol Hepatol 25:627–634PubMedCrossRefGoogle Scholar
  43. 43.
    Paranjpe A, Cacalano NA, Hume WR, Jewett A (2008) Mechanisms of N-acetyl cysteine-mediated protection from 2-hydroxyethyl methacrylate-induced apoptosis. J Endod 34:1191–1197PubMedCrossRefGoogle Scholar
  44. 44.
    Paranjpe A, Cacalano NA, Hume WR, Jewett A (2009) N-acetyl cysteine mediates protection from 2-hydroxyethyl methacrylate induced apoptosis via nuclear factor kappa B-dependent and independent pathways: potential involvement of JNK. Toxicol Sci 108:356–366PubMedCrossRefGoogle Scholar
  45. 45.
    Pauklin S, Kristjuhan A, Maimets T, Jaks V (2005) ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress. Biochem Biophys Res Commun 334:386–394PubMedCrossRefGoogle Scholar
  46. 46.
    Pereg Y, Shkedy D, de Graaf P, Meulmeester E, Edelson-Averbukh M, Salek M, Biton S, Teunisse AF, Lehmann WD, Jochemsen AG, Shiloh Y (2005) Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc Natl Acad Sci USA 102:5056–5061PubMedCrossRefGoogle Scholar
  47. 47.
    Ping-Yuan L, Hung-Jen L, Meng-Jiun L, Feng-Ling Y, Hsue-Yin H, Jeng-Woei L, Wen-Ling S (2006) Avian reovirus activates a novel proapoptotic signal by linking Src to p53. Apoptosis 11:2179–2193PubMedCrossRefGoogle Scholar
  48. 48.
    Quadrilatero J, Hoffman-Goetz L (2004) N-Acetyl-l-cysteine prevents exercise-induced intestinal lymphocyte apoptosis by maintaining intracellular glutathione levels and reducing mitochondrial membrane depolarization. Biochem Biophys Res Commun 319:894–901PubMedCrossRefGoogle Scholar
  49. 49.
    Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Epidemiol 27:493–497Google Scholar
  50. 50.
    Reisner AH, Nemes P, Bucholtz C (1975) The use of Coomassie Brilliant Blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Anal Biochem 64:509–516PubMedCrossRefGoogle Scholar
  51. 51.
    Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450PubMedCrossRefGoogle Scholar
  52. 52.
    Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59:4375–4382PubMedGoogle Scholar
  53. 53.
    Schaefer-Klein J, Givol I, Barsov EV, Whitcomb JM, VanBrocklin M, Foster DN, Federspiel MJ, Hughes SH (1998) The EV-O-derived cell line DF-1 supports the efficient replication of avian leukosis-sarcoma viruses and vectors. Virology 248:305–311PubMedCrossRefGoogle Scholar
  54. 54.
    Shih WL, Hsu HW, Liao MH, Lee LH, Liu HJ (2004) Avian reovirus sigmaC protein induces apoptosis in cultured cells. Virology 321:65–74PubMedCrossRefGoogle Scholar
  55. 55.
    Shmulevitz M, Corcoran J, Salsman J, Duncan R (2004) Cell-cell fusion induced by the avian reovirus membrane fusion protein is regulated by protein degradation. J Virol 78:5996–6004PubMedCrossRefGoogle Scholar
  56. 56.
    Sinclair A, Yarranton S, Schelcher C (2006) DNA-damage response pathways triggered by viral replication. Expert Rev Mol Med 8:1–11PubMedCrossRefGoogle Scholar
  57. 57.
    Spagnuolo G, D’Anto V, Cosentino C, Schmalz G, Schweikl H, Rengo S (2006) Effect of N-acetyl-L-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials 27:1803–1809PubMedCrossRefGoogle Scholar
  58. 58.
    Tang KN, Fletcher OJ, Villegas P (1987) The effect on newborn chicks of oral inoculation of reovirus isolated from chickens with tenosynovitis. Avian Dis 31:584–590PubMedCrossRefGoogle Scholar
  59. 59.
    Van de Zande S, Kuhn EM (2007) Central nervous system signs in chickens caused by a new avian reovirus strain: a pathogenesis study. Vet Microbiol 120:42–49PubMedCrossRefGoogle Scholar
  60. 60.
    Yang F, Yan S, He Y, Wang F, Song S, Guo Y, Zhou Q, Wang Y, Lin Z, Yang Y, Zhang W, Sun S (2008) Expression of hepatitis B virus proteins in transgenic mice alters lipid metabolism and induces oxidative stress in the liver. J Hepatol 48:12–19PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang W, Hoffman B, Liebermann DA (2001) Ectopic expression of MyD118/Gadd45/CR6 (Gadd45beta/alpha/gamma) sensitizes neoplastic cells to genotoxic stress-induced apoptosis. Int J Oncol 18:749–757PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ping-Yuan Lin
    • 1
  • Hung-Jen Liu
    • 2
  • Ching-Dong Chang
    • 3
  • Chi-I Chang
    • 4
  • Jue-Liang Hsu
    • 4
  • Ming-Huei Liao
    • 3
  • Jeng-Woei Lee
    • 1
  • Wen-Ling Shih
    • 4
  1. 1.Graduate Institute and Department of Life ScienceTzu-Chi UniversityHualienTaiwan
  2. 2.Institute of Molecular BiologyNational Chung-Hsing UniversityTaichungTaiwan
  3. 3.Department of Veterinary MedicineNational Pingtung University of Science and TechnologyPingtungTaiwan
  4. 4.Graduate Institute of BiotechnologyNational Pingtung University of Science and TechnologyPingtungTaiwan

Personalised recommendations