Advertisement

Archives of Virology

, 156:1883 | Cite as

Detection of alpha and betacoronaviruses in multiple Iberian bat species

  • Ana FalcónEmail author
  • Sonia Vázquez-Morón
  • Inmaculada Casas
  • Carolina Aznar
  • Guillermo Ruiz
  • Francisco Pozo
  • Pilar Perez-Breña
  • Javier Juste
  • Carlos Ibáñez
  • Inazio Garin
  • Joxerra Aihartza
  • Juan E. Echevarría
Open Access
Brief Report

Abstract

Bat coronaviruses (CoV) are putative precursors of the severe acute respiratory syndrome (SARS) CoV and other CoV that crossed the species barrier from zoonotic reservoirs into the human population. To determine the presence and distribution of CoV in Iberian bats, 576 individuals of 26 different bat species were captured in 13 locations in Spain. We report for the first time the presence of 14 coronaviruses in 9 Iberian bat species. Phylogenetic analysis of a conserved CoV genome region (RdRp gene) shows a wide diversity and distribution of alpha and betacoronavirus in Spain. Interestingly, although some of these viruses are related to other European BatCoV, or to Asian CoV, some of the viruses found in Spain cluster in new groups of α and β CoV.

Keywords

Faecal Sample Iberian Peninsula Rabies Severe Acute Respiratory Syndrome Severe Acute Respiratory Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The emergence of infectious diseases is a major threat to global public health in this century (WHO, World Health Report http://www.who.int/whr/previous/en/index.html) and many of these new infectious human diseases are caused by viruses emerging from wildlife. In the last 50 years, more than 30 new infectious human diseases have been identified (WHO, World Health Report http://www.who.int/whr/previous/en/index.html) including the Severe Acute Respiratory Syndrome (SARS). The aetiological agent of this disease was identified as a previously unknown coronavirus (SARS-CoV) [1] and BatCoV are putative precursors of SARS-CoV [2]. The outbreak of SARS-CoV and subsequent identification of two additional human coronaviruses (HCoV-NL63[3] and HCoV-HKU1 [4]) has drawn human and animal health attention to Coronavirinae subfamily, that includes three genera, Alphacoronavirus (α CoV), Betacoronavirus (β CoV) and Gammacoronavirus (γ CoV), replacing the classical groups 1, 2 and 3 [5] (http://talk.ictvonline.org/media/g/vertebrate-2008/default.aspx).

The relevance and possible re-emergence of the pandemic SARS-CoV and other emerging viruses of zoonotic origin have activated surveillance systems of hazard agents in wild animals, including bats. As a result of these studies, bats have been described as putative reservoirs for some emerging viruses affecting humans [6]. BatCoV are putative precursors of CoV affecting humans and mammals [7, 8], including SARS-CoV [2] and other CoV that crossed the species barrier from zoonotic reservoirs into the human population [9]. In fact, association of some of these CoV to certain bat species has been suggested [10, 11], reinforcing the notion that there may be a relationship between some BatCoV and their hosts. Nowadays the presence of CoV has been shown in bats in China [12, 13], North and South America [14, 15, 16, 17], Africa [18] and a number of regions in Europe [11, 19, 20, 21] but not the Iberian Peninsula (Spain and Portugal), which is a bridge for European and African bat populations [22]. Thus, surveillance of wildlife reservoirs of putative zoonotic CoV is necessary, not only to unveil the ecology of these viruses, but also to permit early detection of viruses that might pose a threat to human health.

To determine the presence and distribution of putative zoonotic CoV in Iberian bats, 576 individuals from 26 bat species were captured and sampled in 13 different locations throughout Spain during 2004-2007 (Fig. 1). These samples were collected in the context of bat rhabdoviruses and lyssaviruses Surveillance Program in Spain. Most of the sampled bat species are also distributed across Europe, but Eptesicus isabellinus is a meridional serotine bat restricted to North Africa and the Iberian Peninsula [23], and Myotis escalerai is endemic in the Iberian Peninsula. Bats were caught with mist nets mainly as they left diurnal roost and by hand with polyethylene butterfly nets within roosts. Oro-pharyngeal swabs (n=390) between 2004 and 2007 as well as faecal samples from individual bats (n=216) in 2007 were taken before bats were released (Table 1).
Fig. 1

Geographical location of bat capture sites in Spain. 1: A Coruña, 2: Lugo, 3: La Rioja, 4: Gerona, 5: Castellón, 6: Valencia, 7: Alicante, 8: Málaga, 9: Cádiz, 10: Sevilla, 11: Huelva, 12: Cáceres, 13: Menorca. The stars show the locations where positive samples were found

Table 1

Results of detection of CoV RNA in faecal or oral samples of bats collected in Spain

Bat Species

Faecal samples positive/no. tested

Oral samples positive/no. tested

Location

Genus

Barbastella barbastellus

0/4

0/2

3, 4

 

Eptesicus isabellinus

1/8

NA

10a

β

Eptesicus serotinus

0/7

NA

1, 12

 

Hypsugo savii

2/26

0/10

2, 4a, 12a,b

α,β

Miniopterus schreibersii

0/2

1/71

2, 5, 6a, 7, 8, 9, 12, 13

α

Myotis alcathoe

0/1

NA

3

 

Myotis bechsteinii

0/2

0/3

4, 8

 

Myotis blythii

NA

1/11

6a, 7, 12

α

Myotis capaccinii

NA

0/14

5, 6, 13

 

Myotis daubentonii

1/39

0/52

2, 3, 8a, 11, 12

α

Myotis emarginatus

NA

0/2

8, 12

 

Myotis escalerai

NA

0/15

11, 7

 

Myotis myotis

1/1

0/17

6, 7, 8a, 12

α

Myotis mystacinus

0/5

NA

2, 3

 

Myotis nattereri

0/3

0/3

4

 

Nyctalus lasiopterus

5/37

0/137

3, 8a,b, 9, 10, 11

α

Nyctalus leisleri

0/23

0/11

2, 3, 4, 8

 

Pipistrellus kuhlii

1/4

0/6

8, 12a

α

Pipistrellus pipistrellus

0/3

0/1

3, 12

 

Pipistrellus pygmaeus

NA

0/1

12

 

Pipistrellus sp.

1/29

0/5

1, 2, 4, 8, 12a,b

α

Plecotus auritus

0/7

NA

1, 3, 4

 

Plecotus austriacus

0/7

0/10

4, 11, 12

 

Rhinolophus euryale

NA

0/13

6, 7, 12

 

Rhinolophus ferrumequinum

0/3

0/5

4, 8, 12

 

Rhinolophus hipposideros

0/4

NA

4, 12

 

Rhinolophus mehelyi

NA

0/1

12

 

Total

12/216

2/390

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

α,β

NA no samples available

aLocations where positives samples were found

bThese samples were collected in different localities than other positive samples with the same number location

Oro-pharyngeal swabs collected between 2004 and 2006 were preserved in 1 ml of lysis buffer (4 M GuSCN (Sigma), OS% N-lauroyl Sarcosine (Sigma), 1 mM dithiothreitol (DTT, Sigma), 25 mM Sodium Citrate and 20 pg/tube Glycogen (Boehringer Mannheim). Oro-pharyngeal swabs and faeces collected in 2007 were preserved in both 1 ml of lysis buffer and 1 ml of viral transport medium (VTM) (Eagle’s minimal essential medium (EMEM) supplemented with 10 UI/ml of penicillin, 10 μg/ml of streptomycin, 160 μg/ml of gentamicin, 50 UI/ml of mycostatin and 1% of bovine serum albumin). All samples were frozen at −80°C before sending them to the Rabies Reference Laboratory at the Centro Nacional de Microbiología, ISCIII in Madrid. Faecal samples were clarified by centrifugation. Total nucleic acid was extracted from a 200 μl aliquot of each specimen for PCR assays and the rest were stored to −80°C in two different aliquots. Final pellets were always resuspended to 55 μl of water.

A pan-coronavirus nested PCR was designed in the RdRp gene. A total of 5 μl of extracted RNA was added to 45 μl of reaction mixture of OneStep RT-PCR kit (QIAGEN, Valencia, CA, USA) containing 200 μM dNTPs and 60 pmol of generic CoV-specific degenerated primers (forward 5′-CARATGAATYTIAARTAYGC-3′ and reverse 5′-TGYTGWGARCAAAAYTCRTG-3′) and following manufacturer indications. Amplifications were carried out into thin-walled reaction tubes (Sorenson, BioScience, UT) in a PTC-200 (Peltier Thermal Cycler, MJ Research, Watertown, MA). Nested PCR amplifications were performed using 2 μl of first amplification product and 48 μl of reaction mixture containing 60 mM Tris-HCl (pH 8.5), 15 mM (NH4)2SO4, 200 μM dNTPs (Amersham Pharmacia Biotech, Piscataway, NJ), 3 mM MgCl2, 35 pmol of generic CoV-specific degenerated primers (forward 5′-ATGGGWTGGGAYTAYCCIAARTG-3′and reverse 5′-ACRTTRTTYTGRWARTA-3′) and 1.25 U AmpliTaq DNA Polymerase (Perkin-Elmer Cetus, Norwalk). Amplification product size of 512 nt was visualized by agarose gel electrophoresis and sequenced directly in both directions using an automated ABI PRISM 377 model sequencer. For phylogeny reconstruction, consensus sequences were aligned together with others obtained from public genomic databases using the program CLUSTAL X (version 1.83) (Table 2). A Bayesian phylogenetic inference was obtained using Mr Bayes version 3.1 [24] with random starting trees without constraints. For the analyses GTR substitution model, gamma estimation and two simultaneous runs of 107 generations were done, each with four Markov chains, and the trees were sampled every 100 generations. Amino acid identity was calculated with MEGA 4 using the pairwise deletion option. The alignment comprised the same 396 bp of the RdRp gene used for the phylogenetic reconstruction.
Table 2

Data of interest related to the 91 coronavirus sequences used for the generation of the phylogenetic tree

Access no

Host species

Country

Genus

Cluster

DQ249221

Bat

China

β

HKU5

DQ249219

Bat

China

β

HKU5

DQ249218

Pipistrellus sp.

China

β

HKU5

DQ648809

Bat

China

β

 

DQ648807

Bat

China

β

 

DQ249217

Pipistrellus sp.

China

β

HKU5

DQ648819

Bat

China

β

 

DQ249215

Tylonycteris

China

β

HKU4

DQ249214

Tylonycteris

China

β

HKU4

DQ074652

Tylonycteris

China

β

HKU4

DQ249216

Tylonycteris

China

β

HKU4

DQ648803

Bat

China

β

 

HQ184059

Hypsugo savii

Spain

β

 

HQ184062

Eptesicus isabellinus

Spain

β

 

GQ404795

Rhinolophus hipposideros

Slovenia

β

 

GQ404796

Rhinolophus hipposideros

Slovenia

β

 

GQ404797

Rhinolophus hipposideros

Slovenia

β

 

DQ022305

Rhinolophus sinicus

China

β

 

NC_009696

Rhinolophus macrotis

 

β

 

NC_004718

Human

 

β

 

NC_009021

Rousettus leschenaulti

China

β

HKU9

NC_006577

Human

 

β

 

NC_006852

Mouse

 

β

 

NC_007732

Pig

 

β

 

NC_005147

Human

 

β

 

EF544563

Myotis occultus

USA

α

 

EF544565

Myotis occultus

USA

α

 

HQ184049

Miniopterus schreibersii

Spain

α

 

HQ184050

Myotis blythii

Spain

α

 

DQ648838

Bat

China

α

 

DQ648855

Rhinolophus ferrumequinum

China

α

 

DQ648854

Rhinolophus ferrumequinum

China

α

 

NC_003436

Pig

 

α

 

EU375862

Myotis dasycneme

Germany

α

 

EU375859

Myotis dasycneme

Germany

α

 

EU375858

Myotis dasycneme

Germany

α

 

EU375855

Myotis dasycneme

Germany

α

 

EU375863

Myotis dasycneme

Germany

α

 

EU375861

Myotis dasycneme

Germany

α

 

EU375856

Myotis dasycneme

Germany

α

 

EU375854

Myotis dasycneme

Germany

α

 

EU375857

Myotis dasycneme

Germany

α

 

EU375865

Myotis bechsteinii

Germany

α

 

EU375853

Myotis bechsteinii

Germany

α

 

EU375860

Myotis bechsteinii

Germany

α

 

EU375869

Pipistrellus nathusii

Germany

α

 

EU375864

Pipistrellus nathusii

Germany

α

 

EU375870

Pipistrellus pygmaeus

Germany

α

 

EU375868

Pipistrellus pygmaeus

Germany

α

 

EU375867

Pipistrellus pygmaeus

Germany

α

 

HQ184060

Pipistrellus sp.

Spain

α

 

DQ648822

Bat

China

α

 

DQ648821

Bat

China

α

 

DQ648824

Bat

China

α

 

DQ648823

Bat

China

α

 

EU375875

Myotis daubentonii

Germany

α

 

EU375873

Myotis daubentonii

Germany

α

 

EU375874

Myotis daubentonii

Germany

α

 

EU375872

Myotis daubentonii

Germany

α

 

EU375866

Myotis daubentonii

Germany

α

 

HQ184056

Myotis daubentonii

Spain

α

 

EU375871

Myotis daubentonii

Germany

α

 

DQ648833

Myotis ricketti

China

α

 

DQ249224

Myotis ricketti

China

α

HKU6

DQ648837

Myotis ricketti

China

α

 

DQ249235

Rhinolophus sinicus

China

α

HKU2

DQ249213

Rhinolophus sinicus

China

α

HKU2

DQ648840

Bat

China

α

 

DQ249228

Miniopterus sp.

China

α

HKU8

EU834954

Miniopterus australis

Australia

α

 

EU834952

Miniopterus australis

Australia

α

 

EU834955

Miniopterus schreibersii

Australia

α

 

EU834953

Rhinolophus megaphyllus

Australia

α

 

DQ648835

Miniopterus schreibersii

China

α

 

DQ648796

Bat

China

α

 

DQ648797

Bat

China

α

 

DQ249226

Miniopterus magnater

China

α

HKU7

HQ184061

Hypsugo savii

Spain

α

 

HQ184051

Nyctalus lasiopterus

Spain

α

 

HQ184054

Nyctalus lasiopterus

Spain

α

 

HQ184053

Nyctalus lasiopterus

Spain

α

 

HQ184052

Nyctalus lasiopterus

Spain

α

 

HQ184055

Nyctalus lasiopterus

Spain

α

 

HQ184057

Myotis myotis

Spain

α

 

HQ184058

Pipistrellus kuhlii

Spain

α

 

EU834951

Myotis macropus

Australia

α

 

NC_002645

Human

 

α

 

NC_005831

Human

 

α

 

AY994055

Cat

 

α

 

NC_002306

Pig

 

α

 

NC_001451

Chicken

 

γ

 

A total of 26 out of the 30 known bat species known for Iberian Peninsula were screened for CoV and 14 samples taken from 9 bat species, all included in the family Vespertilionidae, were positive for CoV RNA (Tables 1 and 2). Twelve of them were found within faecal samples (5.5%) of 7 different bat species in 6 locations and two were obtained in oral samples (0.5%) of 2 other different species in the same location (Table 1). In view of these results, it is not surprising that the presence of CoV RNA is significantly more frequent in faeces than in oral cavity (p<0.0001, FISHER EXACT TEST). It is of interest that none of the viruses has been found in oropharingeal and faecal samples of the same individual, when both samples were available. This fact may indicate either that the infection was at different stage in the different individuals at the time of sampling or that replication of virus may take place independently in the intestinal and respiratory tracts [25]. Most of the CoV RNA sequences found in faecal samples (83%) correspond to α CoV, the remaining two belonging to β CoV. All CoV RNAs from oral samples (100%) were found to contain viral RNA sequences corresponding to α CoV. In agreement with all previous studies [7], none of the coronavirus detected in Spanish bats belong to group γ.

The phylogenetic analysis of Spanish BatCoV was performed using 396nt out of the 512 nt RT-PCR amplified fragments. 116nt fragment information was lost to allowed us include more sequences from other European countries and other continents deposited in GenBanK to perform a meaningful analysis. This small part of the RdRp gene has been previously used, and sufficiently represents the full gene information, for phylogenetic analysis of BatCoV [11, 14, 20]

The phylogenetic reconstruction showed 6 different lineages of Spanish BatCoV (Fig. 2). BatCoV A and B were closely related to other α BatCoV found in China [12], although they appeared to display certain genetic differentiation (Fig. 2). Myotis daubentonii-associated CoV H, and Pipistrellus-associated CoV K, clustered respectively with lineages 4 and 3 of α CoV previously described in Germany and are hosted by the same bat species or genera [11] (Fig. 2). BatCoV L was closely related to cluster HKU7 described in China [10]. BatCoV C, D, E, F, G and I belonged to the same lineage and showed an intriguing new independent cluster (significant posterior probability = 0.95) including BatCoV I′ (Fig. 2). In addition, BatCoV J and M were genetically related to β CoV, although they did not really associate with any of their previously described linages. Sequences corresponding to two different groups of CoV were found in the same bat species (Hypsugo savii) as it was also found for other bat species elsewhere [12]. Spanish BatCoV described here were also classified calculating amino acid distances of these viruses from phylogenetic neighbours and related reference species [21]. Amino acid distance criteria recently described for separating RdRp grouping units (RGU) were adopted [21]. Interestingly, the amino acid distance criteria (>4.8% for alphacoronavirus and >6.3% for betacoronavirus) reinforced the presence of the new group of alphacoronaviruses mentioned above including Spanish BatCoV C, D, E, F, G and I; and additionally showed four new tentative groups (Fig. 2). BatCoV A and B were included in a new alphacoronavirus group and BatCoV I′ constituted another independent alphacoronavirus group. BatCoV J, and M represented two new betacoronavirus groups and BatCoV H, K and L remained as part of several established species (Fig. 2).
Fig. 2

CoV phylogenetic reconstruction based on 396 bp of the RdRp gene including 14 Spanish CoV from different bat species and 77 alpha, beta and gammacoronaviruses obtained from GenBank. Accession numbers are shown in brackets. BatCoV detected in Spain are highlighted in italics. For the analyses GTR substitution model, gamma estimation and two simultaneous runs of 107 generations were done, each with four Markov chains, and the trees were sampled every 100 generations. First 25% trees were excluded as burn-in from the analysis. Significant posterior probabilities are indicated. Complementary information about sequences used in this phylogenetic reconstruction are shown in Table 2. Positive samples described in this work are shown in shaded rectangles and ovals. The new alpha and betacoronavirus groups described in this work are shown in shaded ovals. Amino acid identity was calculated with MEGA 4 using the pairwise deletion option. The alignment comprised the same 396 bp of the RdRp gene used for the phylogenetic reconstruction. Amino acid identities across 132 amino acids are indicated next to the brackets that links every Spanish BatCoV to the phylogenetic neighbours

It has been previously suggested that some CoV associate to certain bat species [10, 11]. However, we found that different bat species from the same colony or location harbour CoV of the same genetic lineage (BatCoV A and B; G and I), indicating a greater diversity and higher complexity than previously described for the ecology of BatCoV. Similar exceptions were found in China and South America [12, 16, 26] and could also be observed with Australian BatCoV (Fig. 2 and Table 2).

In conclusion, previous studies showed the presence of BatCoV in Europe. However, to our knowledge, this is the first report describing the presence of CoV RNA in Iberian bat species. Phylogenetic data indicate high diversity, wide distribution and complex ecology of CoV in bats captured in diverse Spanish locations. The sequences reported herein provide new insights into the diversity of coronaviruses and describe new phylogenetic linages that appear to diverge from all genotypes previously detected in other European locations. Future studies should clarify whether such apparently high diversity reflects the bio-geographical peculiarities of the Iberian Peninsula or not. This study contributes with a new dataset to the global surveillance of emerging BatCoV with pathogenic potential in humans. Our data reinforce the notion that the ecology and transmission of CoV in bat reservoirs is far from being completely understood and that more studies will be necessary to evaluate the magnitude of the potential threat that these viruses pose to human health.

Notes

Acknowledgments

We gratefully thank S. Perlman and P. Woo for providing MHV RNA and HCoV-HKU1 RT-PCR products respectively, as controls for pancoronavirus PCR development. We also thank L. Enjuanes for scientific discussions and P. Gastaminza for critical comments on the manuscript. We are grateful to David García, Ana Popa, Grupo Drosera, Museu de Granollers and everyone who participated in the collection of field samples and the Genomic Unit of the National Center of Microbiology for analyzing the genomic sequences. This work was supported by a Spanish Ministry of Science and Innovation grant (Projects SAF2006-12784-C02-01 and SAF2006-12784-C02-02) and a grant from the Basque Government (ref. IT301-10).

Conflict of interest

The authors declare no conflict of interest.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Drosten C, Günther S, Preiser W, van der Werf S et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976PubMedCrossRefGoogle Scholar
  2. 2.
    Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H et al (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679PubMedCrossRefGoogle Scholar
  3. 3.
    van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, Wertheim-van Dillen PM, Kaandorp J, Spaargaren J, Berkhout B (2004) Identification of a new human coronavirus. Nat Med 10:368–373PubMedCrossRefGoogle Scholar
  4. 4.
    Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon RW, Cai JJ, Luk WK, Poon LL, Wong SS, Guan Y, Peiris JS, Yuen KY (2005) Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79:884–895PubMedCrossRefGoogle Scholar
  5. 5.
    de Groot RJ, Ziebur J, Poon LL, Woo PC, Talbot P, Rottier PJM, Holmes KV, Baric R, Perlman S, Enjuanes L, Gorbalenya AE (2010) Taxonomic structure of the Coronaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberg U, King A (eds) Virus taxonomy. International committee on taxonomy of viruses. Academic Press, LondonGoogle Scholar
  6. 6.
    Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T (2006) Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19:531–545PubMedCrossRefGoogle Scholar
  7. 7.
    Vijaykrishna D, Smith GJ, Zhang JX, Peiris JS, Chen H, Guan Y (2007) Evolutionary insights into the ecology of coronaviruses. J Virol 81:4012–4020PubMedCrossRefGoogle Scholar
  8. 8.
    Woo PCY, Lau SKP, Huang Y, Yuen KY (2009) Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med 234:1117–1127CrossRefGoogle Scholar
  9. 9.
    Pfefferle S, Oppong S, Drexler JF, Gloza-Rausch F, Ipsen A, Seebens A, Muller MA, Annan A, Vallo P, Adu-Sarkodie Y, Kruppa TF, Drosten C (2009) Distant relatives of severe acute respiratory coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg Infect Dis 15:1377–1384PubMedCrossRefGoogle Scholar
  10. 10.
    Woo PC, Lau SK, Li KS, Poon RW, Wong BH, Tosí HW, Yip BC, Huang Y, Chan KH, Yuen KY (2006) Molecular diversity of coronaviruses in bats. Virology 20:180–187CrossRefGoogle Scholar
  11. 11.
    Gloza-Rausch F, Ipsen A, Seebens A, Göttsche M, Panning M, Felix Drexler J, Petersen N, Annan A, Grywna K, Müller M, Pfefferle S, Drosten C (2008) Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg Infect Dis 14:626–631PubMedCrossRefGoogle Scholar
  12. 12.
    Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, Li G, Dong BQ, Liu W, Cheung CL, Xu KM, Song WJ, Vijaykrishna D, Poon LLM, Peiris JSM, Smith GJD, Chen H, Guan Y (2006) Prevalence and genetic diversity of coronavirus in bats from China. J Virol 80:7481–7490PubMedCrossRefGoogle Scholar
  13. 13.
    Chu DK, Poon LL, Chan KH, Chen H, Guan Y, Yuen KY, Peiris JS (2006) Coronaviruses in bent-winged bats (Miniopterus spp.). J Gen Virol 87:2461–2466PubMedCrossRefGoogle Scholar
  14. 14.
    Dominguez SR, O’Shea TJ, Oko LM, Holmes KV (2007) Detection of group 1 coronaviruses in bats in North America. Emerg Infect Dis 13:1295–1300PubMedGoogle Scholar
  15. 15.
    Misra V, Dumonceaux T, Dubois J, Willis C, Nadin-Davis S, Severini A, Wandeler A, Lindsay R, Artsob H (2009) Detection of polyoma and corona viruses in bats of Canada. J Gen Virol 90:2015–2022PubMedCrossRefGoogle Scholar
  16. 16.
    Carrington CV, Foster JE, Zhu HC, Zhang JX, Smith GJ, Thompson N, Auguste AJ, Ramkissoon V, Adesiyun AA, Guan Y (2008) Detection and phylogenetic analysis of group 1 coronaviruses in South American bats. Emerg Infect Dis 14:1890–1893PubMedCrossRefGoogle Scholar
  17. 17.
    Brandao PE, Scheffer K, Villarreal LY, Achkar S, Oliveira Rde N, Fahl Wde O, Castilho JG, Kotait I, Richtzenhain LJ (2008) A coronavirus detected in the vampire bat Desmodus rotundus. Braz J Infect Dis 12:466–468PubMedCrossRefGoogle Scholar
  18. 18.
    Tong S, Conrardy C, Ruone S, Kuzmin IV, Guo X, Tao Y, Niezgoda M, Haynes L, Agwanda B, Breiman RF, Anderson LJ, Rupprecht CE (2009) Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis 15:482–485PubMedCrossRefGoogle Scholar
  19. 19.
    Balboni A, Palladini A, Bogliani G, Battilani M (2010) Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats. Epidemiol Infect 18:1–4Google Scholar
  20. 20.
    Rihtaric D, Hostnik P, Steyer A, Grom J, Toplak I (2010) Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia. Arch Virol 155:507–514PubMedCrossRefGoogle Scholar
  21. 21.
    Drexler JF, Gloza-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, Seebens A, Niedrig M, Pfefferle S, Yordanov S, Zhelyazkov L, Hermanns U, Vallo P, Lukashev A, Müller MA, Deng H, Herrler G, Drosten C (2010) Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 84:11336–11349PubMedCrossRefGoogle Scholar
  22. 22.
    García-Mudarra JL, Ibáñez C, Juste J (2009) The Straits of Gibraltar: barrier or bridge to Ibero-Moroccan bat diversity? Biol J Linn Soc 96:434–450CrossRefGoogle Scholar
  23. 23.
    Ibañez C, García-Mudarra JL, Ruedi M, Stadelmann B, Juste J (2006) The Iberian contribution to cryptic diversity in European bats. Acta Chiropter 8:277–297CrossRefGoogle Scholar
  24. 24.
    Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  25. 25.
    Liu W, Tang F, Fontanet A, Zhan L, Zhao QM, Zhang PH, Wu XM, Zuo SQ, Baril L, Vabret A, Xin ZT, Shao YM, Yang H, Cao WC (2004) Long-term SARS coronavirus excretion from patient cohort, China. Emerg Infect Dis 10:1841–1843PubMedGoogle Scholar
  26. 26.
    Wang LF, Shi Z, Zhang S, Field H, Daszak P, Eaton BT (2006) Review of bats and SARS. Emerg Infect Dis 12:1834–1840PubMedGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Ana Falcón
    • 1
    • 3
    Email author
  • Sonia Vázquez-Morón
    • 1
  • Inmaculada Casas
    • 1
  • Carolina Aznar
    • 1
  • Guillermo Ruiz
    • 1
  • Francisco Pozo
    • 1
  • Pilar Perez-Breña
    • 1
  • Javier Juste
    • 2
  • Carlos Ibáñez
    • 2
  • Inazio Garin
    • 4
  • Joxerra Aihartza
    • 4
  • Juan E. Echevarría
    • 1
  1. 1.Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
  2. 2.Estación Biológica de DoñanaCSICSevilleSpain
  3. 3.Centro Nacional de BiotecnologíaCSICMadridSpain
  4. 4.Department of Zoology and Animal Cell BiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain

Personalised recommendations