Archives of Virology

, 156:1787 | Cite as

Relative reactivity of HIV-1 polyclonal plasma antibodies directed to V3 and MPER regions suggests immunodominance of V3 over MPER and dependence of high anti-V3 antibody titers on virus persistence

  • Raiees Andrabi
  • Alok K. Choudhary
  • Manju Bala
  • Rajesh Kalra
  • S. S. Prakash
  • R. M. Pandey
  • Kalpana Luthra
Original Article

Abstract

Antibodies to two crucial regions, the third variable loop (V3) of gp120 and the membrane-proximal external region (MPER) of gp41 are important for HIV-1 neutralization. We here evaluated the relative binding of polyclonal plasma antibodies from 99 HIV-1-infected individuals from India to the consensus–C V3 and MPER peptides and observed immunodominance of V3 over MPER (p < 0.0001). We further examined the V3- and MPER-specific antibody correlates with clinical parameters. Our results revealed that anti-V3 antibody titers are significantly lower in patients on ART compared to drug-naive individuals (p < 0.0001), most likely due to a decrease in plasma viral load, irrespective of their CD4 counts and total IgG. No such association was observed for MPER, with a similar trend in four follow-up patients. These findings strongly suggest that high titers of V3-specific antibodies are dependent on persistence of virus in circulation, while antibodies to MPER are probably not.

Notes

Acknowledgments

We profoundly thank all the study participants. We acknowledge Prof. Miroslaw K. Gorny and Prof. Susan Zolla Pazner for their constant technical advice and support. We thank DBT (BT/PR 10511/MED/29/66/2008) and ICMR (61/7/2008-BMS) for funding this work. The AITRP fellowship (USA), JRF fellowship provided by ICMR is acknowledged.

Supplementary material

705_2011_1053_MOESM1_ESM.doc (124 kb)
Supplementary material 1 (DOC 124 kb)

References

  1. 1.
    Pantophlet R, Burton DR (2006) GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24:739–769PubMedCrossRefGoogle Scholar
  2. 2.
    Zolla-Pazner S (2004) Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol 4:199–210PubMedCrossRefGoogle Scholar
  3. 3.
    Stamatos NM, Mascola JR, Kalyanaraman VS et al (1998) Neutralizing antibodies from the sera of human immunodeficiency virus type 1-infected individuals bind to monomeric gp120 and oligomeric gp140. J Virol 72:9656–9667PubMedGoogle Scholar
  4. 4.
    Binley JM, Wrin T, Korber B et al (2004) Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78:13232–13252PubMedCrossRefGoogle Scholar
  5. 5.
    Li Y, Migueles SA, Welcher B et al (2007) Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med 13:1032–1034PubMedCrossRefGoogle Scholar
  6. 6.
    Burton DR, Pyati J, Koduri R et al (1994) Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266:1024–1027PubMedCrossRefGoogle Scholar
  7. 7.
    Binley JM, Lybarger EA, Crooks ET et al (2008) Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J Virol 82:11651–11668PubMedCrossRefGoogle Scholar
  8. 8.
    Stamatatos L, Morris L, Burton DR et al (2009) Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat Med 15:866–870PubMedGoogle Scholar
  9. 9.
    Nickle DC, Rolland M, Jensen MA et al (2007) Coping with viral diversity in HIV vaccine design. PLoS Comput Biol 3:e75PubMedCrossRefGoogle Scholar
  10. 10.
    Korber B, Gnanakaran S (2009) The implications of patterns in HIV diversity for neutralizing antibody induction and susceptibility. Curr Opin HIV AIDS 4:408–417PubMedCrossRefGoogle Scholar
  11. 11.
    Lynch RM, Shen T, Gnanakaran S et al (2009) Appreciating HIV type 1 diversity: subtype differences in Env. AIDS Res Hum Retroviruses 25:237–248PubMedCrossRefGoogle Scholar
  12. 12.
    Taylor BS, Hammer SM (2008) The challenge of HIV-1 subtype diversity. N Engl J Med 359:1965–1966PubMedCrossRefGoogle Scholar
  13. 13.
    Letvin NL (2002) Strategies for an HIV vaccine. J Clin Invest 110:15–20PubMedGoogle Scholar
  14. 14.
    McMichael AJ (2006) HIV vaccines. Annu Rev Immunol 24:227–255PubMedCrossRefGoogle Scholar
  15. 15.
    Hemelaar J, Gouws E, Ghys PD et al (2006) Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004. AIDS 20:W13–W23PubMedCrossRefGoogle Scholar
  16. 16.
    Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700PubMedCrossRefGoogle Scholar
  17. 17.
    Thali M, Moore JP, Furman C et al (1993) Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding. J Virol 67:3978–3988PubMedGoogle Scholar
  18. 18.
    Dalgleish AG, Beverley PC, Clapham PR et al (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767PubMedCrossRefGoogle Scholar
  19. 19.
    Deng H, Liu R, Ellmeier W et al (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666PubMedCrossRefGoogle Scholar
  20. 20.
    Dragic T, Litwin V, Allaway GP et al (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673PubMedCrossRefGoogle Scholar
  21. 21.
    Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280:1884–1888PubMedCrossRefGoogle Scholar
  22. 22.
    Lu M, Blacklow SC, Kim PS (1995) A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 2:1075–1082PubMedCrossRefGoogle Scholar
  23. 23.
    Mascola JR, Montefiori DC (2010) The role of antibodies in HIV vaccines. Annu Rev Immunol 28:413–444PubMedCrossRefGoogle Scholar
  24. 24.
    Zolla-Pazner S, Cohen SS, Krachmarov C et al (2008) Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp120 envelope. Virology 372:233–246PubMedCrossRefGoogle Scholar
  25. 25.
    Jiang X, Burke V, Totrov M et al (2010) Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol 17:955–961PubMedCrossRefGoogle Scholar
  26. 26.
    Almond D, Kimura T, Kong X et al (2010) Structural conservation predominates over sequence variability in the crown of HIV type 1’s V3 loop. AIDS Res Hum Retroviruses 26:717–723PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu P, Liu J, Bess J Jr et al (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441:847–852PubMedCrossRefGoogle Scholar
  28. 28.
    Buchacher A, Predl R, Strutzenberger K et al (1994) Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein–Barr virus transformation for peripheral blood lymphocyte immortalization. AIDS Res Hum Retroviruses 10:359–369PubMedCrossRefGoogle Scholar
  29. 29.
    Muster T, Steindl F, Purtscher M et al (1993) A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 67:6642–6647PubMedGoogle Scholar
  30. 30.
    Zwick MB, Labrijn AF, Wang M et al (2001) Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 75:10892–10905PubMedCrossRefGoogle Scholar
  31. 31.
    Krachmarov C, Pinter A, Honnen WJ et al (2005) Antibodies that are cross-reactive for human immunodeficiency virus type 1 clade A and clade B v3 domains are common in patient sera from Cameroon, but their neutralization activity is usually restricted by epitope masking. J Virol 79:780–790PubMedCrossRefGoogle Scholar
  32. 32.
    Smith JD, Bruce CB, Featherstone AS et al (1994) Reactions of Ugandan antisera with peptides encoded by V3 loop epitopes of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 10:577–583PubMedCrossRefGoogle Scholar
  33. 33.
    Geffin RB, Scott GB, Melenwick M et al (1998) Association of antibody reactivity to ELDKWA, a glycoprotein 41 neutralization epitope, with disease progression in children perinatally infected with HIV type 1. AIDS Res Hum Retroviruses 14:579–590PubMedCrossRefGoogle Scholar
  34. 34.
    Sahni AK, Prasad VV, Seth P (2002) Genomic diversity of human immunodeficiency virus type-1 in India. Int J STD AIDS 13:115–118PubMedCrossRefGoogle Scholar
  35. 35.
    Gorny MK, Revesz K, Williams C et al (2004) The v3 loop is accessible on the surface of most human immunodeficiency virus type 1 primary isolates and serves as a neutralization epitope. J Virol 78:2394–2404PubMedCrossRefGoogle Scholar
  36. 36.
    Nokta M, Turk P, Loesch K et al (2000) Neutralization profiles of sera from human immunodeficiency virus (HIV)-infected individuals: relationship to HIV viral load and CD4 cell count. Clin Diagn Lab Immunol 7:412–416PubMedGoogle Scholar
  37. 37.
    Piantadosi A, Panteleeff D, Blish CA et al (2009) Breadth of neutralizing antibody response to human immunodeficiency virus type 1 is affected by factors early in infection but does not influence disease progression. J Virol 83:10269–10274PubMedCrossRefGoogle Scholar
  38. 38.
    Sather DN, Armann J, Ching LK et al (2009) Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J Virol 83:757–769PubMedCrossRefGoogle Scholar
  39. 39.
    Muhlbacher M, Spruth M, Siegel F, Zangerle R, Dierich MP (1999) Longitudinal study of antibody reactivity against HIV-1 envelope and a peptide representing a conserved site on Gp41 in HIV-1-infected patients. Immunobiology 200:295–305PubMedGoogle Scholar
  40. 40.
    Garrity RR, Rimmelzwaan G, Minassian A, Tsai WP, Lin G, de Jong JJ, Goudsmit J, Nara PL (1997) Refocusing neutralizing antibody response by targeted dampening of an immunodominant epitope. J Immunol 159:279–289PubMedGoogle Scholar
  41. 41.
    Morris L, Binley JM, Clas BA, Bonhoeffer S, Astill TP, Kost R, Hurley A, Cao Y, Markowitz M, Ho DD, Moore JP (1998) HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. J Exp Med 188:233–245PubMedCrossRefGoogle Scholar
  42. 42.
    Haynes BF, Fleming J, St Clair EW et al (2005) Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308:1906–1908PubMedCrossRefGoogle Scholar
  43. 43.
    Nabel GJ (2005) Immunology. Close to the edge: neutralizing the HIV-1 envelope. Science 308:1878–1879PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Raiees Andrabi
    • 1
  • Alok K. Choudhary
    • 1
  • Manju Bala
    • 2
  • Rajesh Kalra
    • 1
  • S. S. Prakash
    • 1
  • R. M. Pandey
    • 3
  • Kalpana Luthra
    • 1
  1. 1.Department of BiochemistryAll India Institute of Medical SciencesNew DelhiIndia
  2. 2.Regional STD Teaching Training and Research CentreSafdarjang HospitalNew DelhiIndia
  3. 3.Department of BiostatisticsAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations