Archives of Virology

, Volume 156, Issue 7, pp 1143–1150 | Cite as

Genetic characterization of a novel calicivirus from a chicken

  • Sandro WolfEmail author
  • Jochen Reetz
  • Peter Otto
Original Article


We describe the identification and genetic characterization of a novel enteric calicivirus, detected by transmission electron microscopy and RT-PCR in two clinically normal chickens and in a chicken with runting and stunting syndrome from different flocks in southern Germany. Positive findings were confirmed by sequencing. The complete nucleotide sequence and genome organization of one strain (Bavaria/04V0021) was determined. The genome of the Bavaria virus is 7,908 nt long and contains two coding open reading frames. Phylogenetic analysis of the deduced partial 2C helicase/NTPase, 3C cysteine protease, RNA-dependent RNA polymerase and complete VP1 capsid protein amino acid sequences showed that the virus is genetically related to but distinct from sapoviruses and lagoviruses. Morphologically, the Bavaria virus particles are 37-42 nm in diameter and exhibit characteristic cup-shaped surface depressions.


Rabbit Haemorrhagic Disease Virus Fermentas Life Sapovirus Chicken Flock Capsid Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the excellent technical assistance of Maria-Margarida Vargas in sample preparation for electron microscopy.


  1. 1.
    Carstens EB (2010) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Arch Virol 155:133–146PubMedCrossRefGoogle Scholar
  2. 2.
    Green KY, Ando T, Balayan MS, Berke T, Clarke IN, Estes MK, Matson DO, Nakata S, Neill JD, Studdert MJ, Thiel HJ (2000) Taxonomy of the caliciviruses. J Infect Dis 181(Suppl 2):S322–S330PubMedCrossRefGoogle Scholar
  3. 3.
    Farkas T, Sestak K, Wei C, Jiang X (2008) Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. J Virol 82:5408–5416PubMedCrossRefGoogle Scholar
  4. 4.
    L’Homme Y, Sansregret R, Plante-Fortier E, Lamontagne AM, Ouardani M, Lacroix G, Simard C (2009) Genomic characterization of swine caliciviruses representing a new genus of Caliciviridae. Virus Genes 39:66–75PubMedCrossRefGoogle Scholar
  5. 5.
    Reuter G, Zimsek-Mijovski J, Poljsak-Prijatelj M, Di Bartolo I, Ruggeri FM, Kantala T, Maunula L, Kiss I, Kecskemeti S, Halaihel N et al (2010) Incidence, diversity, and molecular epidemiology of sapoviruses in swine across Europe. J Clin Microbiol 48:363–368PubMedCrossRefGoogle Scholar
  6. 6.
    Wolf S, Williamson W, Hewitt J, Lin S, Rivera-Aban M, Ball A, Scholes P, Savill M, Greening GE (2009) Molecular detection of norovirus in sheep and pigs in New Zealand farms. Vet Microbiol 133:184–189PubMedCrossRefGoogle Scholar
  7. 7.
    Reuter G, Pankovics P, Egyed L (2009) Detection of genotype 1 and 2 bovine noroviruses in Hungary. Vet Rec 165:537–538PubMedCrossRefGoogle Scholar
  8. 8.
    Scipioni A, Mauroy A, Vinje J, Thiry E (2008) Animal noroviruses. Vet J 178:32–45PubMedCrossRefGoogle Scholar
  9. 9.
    Koopmans M (2008) Progress in understanding norovirus epidemiology. Curr Opin Infect Dis 21:544–552PubMedCrossRefGoogle Scholar
  10. 10.
    Smith AW, Skilling DE, Cherry N, Mead JH, Matson DO (1998) Calicivirus emergence from ocean reservoirs: zoonotic and interspecies movements. Emerg Infect Dis 4:13–20PubMedCrossRefGoogle Scholar
  11. 11.
    Guo M, Evermann JF, Saif LJ (2001) Detection and molecular characterization of cultivable caliciviruses from clinically normal mink and enteric caliciviruses associated with diarrhea in mink. Arch Virol 146:479–493PubMedCrossRefGoogle Scholar
  12. 12.
    Poet SE, Skilling DE, Megyesl JL, Gilmartin WG, Smith AW (1996) Detection of a non-cultivatable calicivirus from the white tern (Gygis alba rothschildi). J Wildl Dis 32:461–467PubMedGoogle Scholar
  13. 13.
    Sironi G (1994) Concurrent calicivirus and Isospora lacazei infections in goldfinches (Carduelis carduelis). Vet Rec 134:196PubMedCrossRefGoogle Scholar
  14. 14.
    Cubitt WD, Barrett AD (1985) Propagation and preliminary characterization of a chicken candidate calicivirus. J Gen Virol 66(Pt 7):1431–1438PubMedCrossRefGoogle Scholar
  15. 15.
    Wyeth JP, Chettle NJ, Labram J (1981) Avian calicivirus. Vet Rec 109:477PubMedCrossRefGoogle Scholar
  16. 16.
    Gough RE, Drury SE, Bygrave AC, Mechie SC (1992) Detection of caliciviruses from pheasants with enteritis. Vet Rec 131:290–291PubMedCrossRefGoogle Scholar
  17. 17.
    Toffam A, Bano L, Montesi F, Beato MS, De Nardi R, Terregino C, Capua I (2005) Detection of Caliciviruses in young pheasants (Phasianus colchicus) with enteritis in Italy. Ital J Anim Sci 4:300–302Google Scholar
  18. 18.
    Gough RE, Spackman D (1981) Virus-like particles associated with disease in guinea fowl. Vet Rec 109:497PubMedCrossRefGoogle Scholar
  19. 19.
    Morrow CJ, Samu G, Matrai E, Klausz A, Wood AM, Richter S, Jaskulska B, Hess M (2008) Avian hepatitis E virus infection and possible associated clinical disease in broiler breeder flocks in Hungary. Avian Pathol 37:527–535PubMedCrossRefGoogle Scholar
  20. 20.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  21. 21.
    Meyers G, Wirblich C, Thiel HJ, Thumfart JO (2000) Rabbit hemorrhagic disease virus: genome organization and polyprotein processing of a calicivirus studied after transient expression of cDNA constructs. Virology 276:349–363PubMedCrossRefGoogle Scholar
  22. 22.
    Strive T, Wright JD, Robinson AJ (2009) Identification and partial characterisation of a new Lagovirus in Australian wild rabbits. Virology 384:97–105PubMedCrossRefGoogle Scholar
  23. 23.
    Guo M, Chang KO, Hardy ME, Zhang Q, Parwani AV, Saif LJ (1999) Molecular characterization of a porcine enteric calicivirus genetically related to Sapporo-like human caliciviruses. J Virol 73:9625–9631PubMedGoogle Scholar
  24. 24.
    Jeong C, Park SI, Park SH, Kim HH, Park SJ, Jeong JH, Choy HE, Saif LJ, Kim SK, Kang MI et al (2007) Genetic diversity of porcine sapoviruses. Vet Microbiol 122:246–257PubMedCrossRefGoogle Scholar
  25. 25.
    Green KY, Chanock RM, Kapikian AZ (2001) Human calicivirus. In Knipe HP (ed) Fields virology, vol 1, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 841–874Google Scholar
  26. 26.
    Hansman GS, Oka T, Katayama K, Takeda N (2007) Human sapoviruses: genetic diversity, recombination, and classification. Rev Med Virol 17:133–141PubMedCrossRefGoogle Scholar
  27. 27.
    McIntosh MT, Behan SC, Mohamed FM, Lu Z, Moran KE, Burrage TG, Neilan JG, Ward GB, Botti G, Capucci L, Metwally SA (2007) A pandemic strain of calicivirus threatens rabbit industries in the Americas. Virol J 4:96PubMedCrossRefGoogle Scholar
  28. 28.
    Pesavento PA, Chang KO, Parker JS (2008) Molecular virology of feline calicivirus. Vet Clin North Am Small Anim Pract 38:775–786, viiGoogle Scholar
  29. 29.
    Kurth A, Evermann JF, Skilling DE, Matson DO, Smith AW (2006) Prevalence of vesivirus in a laboratory-based set of serum samples obtained from dairy and beef cattle. Am J Vet Res 67:114–119PubMedCrossRefGoogle Scholar
  30. 30.
    Edwards JF, Yedloutschnig RJ, Dardiri AH, Callis JJ (1987) Vesicular exanthema of swine virus: isolation and serotyping of field samples. Can J Vet Res 51:358–362PubMedGoogle Scholar
  31. 31.
    Martella V, Campolo M, Lorusso E, Cavicchio P, Camero M, Bellacicco AL, Decaro N, Elia G, Greco G, Corrente M et al (2007) Norovirus in captive lion cub (Panthera leo). Emerg Infect Dis 13:1071–1073PubMedGoogle Scholar
  32. 32.
    Martella V, Lorusso E, Decaro N, Elia G, Radogna A, D’Abramo M, Desario C, Cavalli A, Corrente M, Camero M et al (2008) Detection and molecular characterization of a canine norovirus. Emerg Infect Dis 14:1306–1308PubMedCrossRefGoogle Scholar
  33. 33.
    Neill JD, Meyer RF, Seal BS (1995) Genetic relatedness of the caliciviruses: San Miguel sea lion and vesicular exanthema of swine viruses constitute a single genotype within the Caliciviridae. J Virol 69:4484–4488PubMedGoogle Scholar
  34. 34.
    Seal BS, Lutze-Wallace C, Kreutz LC, Sapp T, Dulac GC, Neill JD (1995) Isolation of caliciviruses from skunks that are antigenically and genotypically related to San Miguel sea lion virus. Virus Res 37:1–12PubMedCrossRefGoogle Scholar
  35. 35.
    van der Poel WH, van der Heide R, Verschoor F, Gelderblom H, Vinje J, Koopmans MP (2003) Epidemiology of Norwalk-like virus infections in cattle in The Netherlands. Vet Microbiol 92:297–309PubMedCrossRefGoogle Scholar
  36. 36.
    Wang QH, Costantini V, Saif LJ (2007) Porcine enteric caliciviruses: genetic and antigenic relatedness to human caliciviruses, diagnosis and epidemiology. Vaccine 25:5453–5466PubMedCrossRefGoogle Scholar
  37. 37.
    Karst SM, Wobus CE, Lay M, Davidson J (2003) Virgin HWt: STAT1-dependent innate immunity to a Norwalk-like virus. Science 299:1575–1578PubMedCrossRefGoogle Scholar
  38. 38.
    Radford AD, Coyne KP, Dawson S, Porter CJ, Gaskell RM (2007) Feline calicivirus. Vet Res 38:319–335PubMedCrossRefGoogle Scholar
  39. 39.
    Hurley KF, Sykes JE (2003) Update on feline calicivirus: new trends. Vet Clin North Am Small Anim Pract 33:759–772PubMedCrossRefGoogle Scholar
  40. 40.
    Cooke BD (2002) Rabbit haemorrhagic disease: field epidemiology and the management of wild rabbit populations. Rev Sci Tech 21:347–358PubMedGoogle Scholar
  41. 41.
    van Der Poel WH, Vinje J, van Der Heide R, Herrera MI, Vivo A, Koopmans MP (2000) Norwalk-like calicivirus genes in farm animals. Emerg Infect Dis 6:36–41Google Scholar
  42. 42.
    Vinje J, Altena SA, Koopmans MP (1997) The incidence and genetic variability of small round-structured viruses in outbreaks of gastroenteritis in The Netherlands. J Infect Dis 176:1374–1378PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Biology, Institute for MicrobiologyDresden University of TechnologyDresdenGermany
  2. 2.Federal Institute of Risk AssessmentBerlinGermany
  3. 3.Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-InstitutFederal Research Institute for Animal HealthJenaGermany

Personalised recommendations