Archives of Virology

, Volume 156, Issue 6, pp 931–938 | Cite as

The small nuclear ribonucleoprotein U1A interacts with NS5 from yellow fever virus

  • Roberta V. M. Bronzoni
  • Maria C. F. S. Madrid
  • Danilo V. B. Duarte
  • Vanessa O. A. Pellegrini
  • Carolina C. Pacca
  • Ana C. V. Carmo
  • Cleslei F. Zanelli
  • Sandro R. Valentini
  • Carolina Santacruz-Pérez
  • João A. R. G. Barbosa
  • Carol S. Lutz
  • Paula Rahal
  • Maurício L. Nogueira
Original Article


The flavivirus NS5 protein is one of the most important proteins of the replication complex, and cellular proteins can interact with it. This study shows for the first time that the yellow fever virus (YFV) NS5 protein is able to interact with U1A, a protein involved in splicing and polyadenylation. We confirmed this interaction by GST-pulldown assay and by co-immunoprecipitation in YFV-infected cells. A region between amino acids 368 and 448 was identified as the site of interaction of the NS5 protein with U1A. This region was conserved among some flaviviruses of medical importance. The implications of this interaction for flavivirus replication are discussed.


West Nile Virus Japanese Encephalitis Virus Japanese Encephalitis Virus Yellow Fever Virus Synthetic Dropout Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Charles Rice for the pACNR/FLYF-17Dx vector used to construct RdRp segments and for supplying NS5 antisera. We also thank Dr. Arne Meyer and Dr. Mário Murakami, UNESP, for technical assistance in protein purification. This work was supported by FAPESP (04/11098 and 05/03260-7) and CNPq Grants (473613/2007-7 and 566289/2008-3) to MLN. MLN is recipient of a CNPq Fellowship.


  1. 1.
    Ashour J, Laurent-Rolle M, Shi PY, Garcia-Sastre A (2009) NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83:5408–5418PubMedCrossRefGoogle Scholar
  2. 2.
    Buckley A, Gaidamovich S, Turchinskaya A, Gould EA (1992) Monoclonal antibodies identify the NS5 yellow fever virus non-structural protein in the nuclei of infected cells. J Gen Virol 73:1125–1130PubMedCrossRefGoogle Scholar
  3. 3.
    Burke DS, Monath TP (2001) Flaviviurses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1043–1125Google Scholar
  4. 4.
    Chambers TJ, McCourt DW, Rice CM (1990) Production of yellow fever virus proteins in infected cells: identification of discrete polyprotein species and analysis of cleavage kinetics using region-specific polyclonal antisera. Virology 177:159–174PubMedCrossRefGoogle Scholar
  5. 5.
    Cheng JH, Peng CW, Hsu YH, Tsai CH (2002) The synthesis of minus-strand RNA of bamboo mosaic potexvirus initiates from multiple sites within the poly(A) tail. J Virol 76:6114–6120PubMedCrossRefGoogle Scholar
  6. 6.
    Davidson AD (2009) New insights into Flavivirus nonstructural protein 5. Adv Virus Res 74:41–101PubMedCrossRefGoogle Scholar
  7. 7.
    Edgil D, Polacek C, Harris E (2006) Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 80:2976–2986PubMedCrossRefGoogle Scholar
  8. 8.
    Ellencrona K, Syed A, Johansson M (2009) Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism. Biol Chem 390:319–323PubMedCrossRefGoogle Scholar
  9. 9.
    Forwood JK, Brooks A, Briggs LJ, Xiao CY, Jans DA, Vasudevan SG (1999) The 37-amino-acid interdomain of dengue virus NS5 protein contains a functional NLS and inhibitory CK2 site. Biochem Biophys Res Commun 257:731–737PubMedCrossRefGoogle Scholar
  10. 10.
    García-Montalvo BM, Medina F, del Angel RM (2004) La protein binds to NS5 and NS3 and to the 5’ and 3’ ends of Dengue 4 virus RNA. Virus Res 102:141–150PubMedCrossRefGoogle Scholar
  11. 11.
    Guilford PJ, Beck DL, Forster RLS (1991) Influence of the poly(A) tail and putative polyadenylation signal on the infectivity of white clover mosaic potexvirus. Virology 182:61–67PubMedCrossRefGoogle Scholar
  12. 12.
    Hieda M, Tachibana T, Fukumoto M, Yoneda Y (2001) Nuclear import of the U1A splicesome protein is mediated by importin α/β and ran in living mammalian cells. J Biol Chem 276:16824–16832PubMedCrossRefGoogle Scholar
  13. 13.
    Imataka H, Gradi A, Sonenberg N (1998) A newly identified N terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J 17:7480–7489PubMedCrossRefGoogle Scholar
  14. 14.
    Jans DA, Chan CK, Huebner S (1998) Signals mediating nuclear targeting and their regulation: application in drug delivery. Med Res Rev 18:189–223PubMedCrossRefGoogle Scholar
  15. 15.
    Johansson M, Brooks AJ, Jans DA, Vasudevan SG (2001) A small region of the dengue virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the nuclear transport receptor importin-beta and the viral helicase, NS3. J Gen Virol 82:735–745PubMedGoogle Scholar
  16. 16.
    Kambach C, Mattaj IW (1992) Intracellular distribution of the UIA protein depends on active transport and nuclear binding to U1 snRNA. J Cell Biol 118:11–21PubMedCrossRefGoogle Scholar
  17. 17.
    Kapoor M, Zhang L, Ramachandra M, Kusukawa J, Ebner KE, Padmanabhan R (1995) Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem 270:19100–19106PubMedCrossRefGoogle Scholar
  18. 18.
    Lai MMC (1998) Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244:1–12PubMedCrossRefGoogle Scholar
  19. 19.
    Liang S, Lutz CS (2006) p54nrb is a component of the snRNP free U1A (SF-A) complex that promotes pre-mRNA cleavage during polyadenylation. RNA 12:111–121PubMedCrossRefGoogle Scholar
  20. 20.
    Lin RJ, Chang BL, Yu HP, Liao CL, Lin YL (2006) Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol 80:5908–5918PubMedCrossRefGoogle Scholar
  21. 21.
    Lindenbach BD, Rice CM (2001) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 991–1041Google Scholar
  22. 22.
    Lindenbach BD, Thiel HJ, Rice CM (2007) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 1101–1152Google Scholar
  23. 23.
    Lu J, Hall KB (1995) An RBD that does not bind RNA: NMR secondary structure determination and biochemical properties of the C-terminal RNA binding domain from the human U1A protein. J Mol Biol 247:739–752PubMedGoogle Scholar
  24. 24.
    Lührmann R, Kastner B, Bach M (1990) Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim Biophys Acta 1087:265–292PubMedGoogle Scholar
  25. 25.
    Lutz CS, Alwine JC (1994) Direct interaction of the U1snRNP-A protein with the upstream efficiency element of the SV40 late polyadenylation signal. Genes Dev 8:576–586PubMedCrossRefGoogle Scholar
  26. 26.
    Lutz CS, Cooke C, O’Connor JP, Kobayashi R, Alwine JC (1998) The snRNP-free U1A (SF-A) complex(es): identification of the largest subunit as PSF, the polypyrimidine-tract binding protein-associated splicing factor. RNA 4:1493–1499PubMedCrossRefGoogle Scholar
  27. 27.
    Lutz-Freyermuth C, Keene JD (1989) The U1 RNA-binding site of the U1 small nuclear ribonucleoprotein (snRNP)-associated A protein suggests a similarity with U2 snRNPs. Mol Cell Biol 9:2975–2982PubMedGoogle Scholar
  28. 28.
    Lutz-Freyermuth C, Query CC, Keene JD (1990) Quantitative determination that one of two potential RNA-binding domains of the A protein component of the U1 small nuclear ribonucleoprotein complex binds with high affinity to stem-loop II of U1 RNA. Proc Natl Acad Sci USA 87:6393–6397PubMedCrossRefGoogle Scholar
  29. 29.
    Mandl CW, Kunz C, Heinz FX (1991) Presence of poly(A) in a flavivirus: significant differences between the 3’ noncoding regions of the genomic RNAs of tick-borne encephalitis-virus strains. J Virol 65:4070–4077PubMedGoogle Scholar
  30. 30.
    Mazzon M, Jones M, Davidson A, Chain B, Jacobs M (2009) Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. J Infect Dis 200:1261–1270PubMedCrossRefGoogle Scholar
  31. 31.
    Meyer BE, Malim MH (1994) The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev 8:1538–1547PubMedCrossRefGoogle Scholar
  32. 32.
    O’Connor JP, Alwine JC, Lutz CS (1997) Identification of non-snRNP associated U1A protein in human cell nucleoplasm. RNA 3:1444–1455PubMedGoogle Scholar
  33. 33.
    Polacek C, Friebe P, Harris E (2009) Poly(A)-binding protein binds to the non-polyadenylated 3’ untranslated region of dengue virus and modulates translation efficiency. J Gen Virol 90:687–692PubMedCrossRefGoogle Scholar
  34. 34.
    Pryor MJ, Rawlinson SM, Butcher RE, Barton CL, Waterhouse TA, Vasudevan SG, Bardin PG, Wright PJ, Jans DA, Davidson AD (2007) Nuclear localization of dengue virus nonstructural protein 5 through its importin alpha/beta-recognized nuclear localization sequences is integral to viral infection. Traffic 8:795–807PubMedCrossRefGoogle Scholar
  35. 35.
    Qing M, Yang F, Zhang B, Zou G, Robida JM, Yuan Z, Tang H, Shi PY (2009) Cyclosporine inhibits flavivirus replication through blocking the interaction between host cyclophilins and viral NS5 protein. Antimicrob Agents Chemother 53:3226–3235PubMedCrossRefGoogle Scholar
  36. 36.
    Raju R, Hajjou M, Hill KR, Botta V, Botta S (1999) In vivo addition of poly(A) tail and AU-rich sequences to the 3’ terminus of the Sindbis virus RNA genome: a novel 3’-end repair pathway. J Virol 73:2410–2419PubMedGoogle Scholar
  37. 37.
    Rawlinson SM, Pryor MJ, Wright PJ, Jans DA (2009) CRM1-mediated nuclear export of dengue virus RNA polymerase NS5 modulates interleukin-8 induction and virus production. J Biol Chem 284:15589–15597PubMedCrossRefGoogle Scholar
  38. 38.
    Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH (1985) Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733PubMedCrossRefGoogle Scholar
  39. 39.
    Teramoto T, Kohno Y, Mattoo P, Markoff L, Falgout B, Padmanabhan R (2008) Genome 3’-end repair in dengue virus type 2. RNA 14:2645–2656PubMedCrossRefGoogle Scholar
  40. 40.
    Uchil PD, Kumar AV, Satchidanandam V (2006) Nuclear localization of flavivirus RNA synthesis in infected cells. J Virol 80:5451–5464PubMedCrossRefGoogle Scholar
  41. 41.
    van Leeuwen HC, Liefhebber JM, Spaan WJ (2006) Repair and polyadenylation of a naturally occurring hepatitis C virus 3’ nontranslated region-shorter variant in selectable replicon cell lines. J Virol 80:4336–4343PubMedCrossRefGoogle Scholar
  42. 42.
    Werme K, Wigerius M, Johansson M (2008) Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling. Cell Microbiol 10:696–712PubMedCrossRefGoogle Scholar
  43. 43.
    Yocupicio-Monroy M, Padmanabhan R, Medina F, del Angel RM (2007) Mosquito La protein binds to the 3’ untranslated region of the positive and negative polarity dengue virus RNAs and relocates to the cytoplasm of infected cells. Virology 357:29–40PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Roberta V. M. Bronzoni
    • 1
  • Maria C. F. S. Madrid
    • 1
  • Danilo V. B. Duarte
    • 1
  • Vanessa O. A. Pellegrini
    • 1
    • 2
  • Carolina C. Pacca
    • 1
    • 2
  • Ana C. V. Carmo
    • 1
    • 2
  • Cleslei F. Zanelli
    • 3
  • Sandro R. Valentini
    • 3
  • Carolina Santacruz-Pérez
    • 4
    • 5
  • João A. R. G. Barbosa
    • 4
    • 5
  • Carol S. Lutz
    • 6
  • Paula Rahal
    • 2
  • Maurício L. Nogueira
    • 1
    • 7
  1. 1.Departamento de Doenças Dermatológicas, Infecciosas e ParasitáriasFaculdade de Medicina de Rio PretoSão José do Rio PretoBrazil
  2. 2.Instituto de Biociências, Letras e Ciências ExatasUniversidade Estadual PaulistaSão José do Rio PretoBrazil
  3. 3.Departamento de Ciências Biológicas, Faculdade de Ciências FarmacêuticasUniversidade Estadual PaulistaAraraquaraBrazil
  4. 4.Centro de Biologia Molecular EstruturalLaboratório Nacional de Luz SíncrotonCampinasBrazil
  5. 5.Departamento de Microbiologia, Instituto de Ciências Biomédicas IIUniversidade de São PauloSão PauloBrazil
  6. 6.Department of Biochemistry and Molecular Biology, New Jersey Medical School and Graduate School of Biomedical SciencesUniversity of Medicine and Dentistry of New JerseyNewarkUSA
  7. 7.Laboratório de Pesquisa em ViirologiaFaculdade de Medicina de Rio PretoSão José do Rio PretoBrazil

Personalised recommendations