Archives of Virology

, Volume 156, Issue 5, pp 875–879 | Cite as

Complete nucleotide sequence and genome organisation of grapevine Bulgarian latent virus

  • Toufic Elbeaino
  • Michele Digiaro
  • Frida Fallanaj
  • Slobodan Kuzmanovic
  • Giovanni Paolo Martelli
Brief Report

Abstract

The complete genome sequence of grapevine Bulgarian latent virus (GBLV) has been determined. RNA-1 (7,452 nt in length) contains a single ORF of 6,285 nt, encoding a polyprotein with conserved motifs characteristic of the viral protease cofactor (Prot-cofact), the NTP-binding protein (NTP), the cysteine-like protease (Cyst-Prot) and the RNA-dependent RNA polymerase (RdRp) of members of the order Picornavirales and show high aa sequence identity with blackcurrant reversion virus (BRV, 64%). RNA-2 (5,821 nt) contains a single ORF of 4,500 nt, encoding a polyprotein in which the conserved motifs of the movement protein (MP) and coat protein (CP) have been identified. The GBLV CP aa sequence shows highest homology with that of blueberry leaf mottle virus (BLMoV, 68%). Both RNAs have a poly(A) tail and a NCR at the 3’ and 5’ termini, respectively. The results of this study confirm the classification of GBLV as a member of a distinct species in subgroup C of the genus Nepovirus.

References

  1. 1.
    Sanfaçon H, Wellink J, Le Gall O, Karasev A, van der Vlugt R, Wetzel T (2009) Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus and the proposed genus Torradovirus. Arch Virol 154:899–907PubMedCrossRefGoogle Scholar
  2. 2.
    Ramsdell DC, State-Smith R (1981) Physical and chemical properties of the particles of ribonucleic acid of blueberry leaf mottle virus. Phytopathol 71(4):468–472CrossRefGoogle Scholar
  3. 3.
    Martelli GP, Gallitelli D, Abracheva P, Savino V, Quacquarelli A (1977) Some properties of grapevine Bulgarian latent virus. Ann Appl Biol 85:51–58CrossRefGoogle Scholar
  4. 4.
    Martelli GP, Boudon-Padieu E (2006) Directory of infectious diseases of grapevines. Options Mediterr Ser B 55:11–201Google Scholar
  5. 5.
    Le Gall O, Iwanami T, Karasev AV, Jones T, Lehto K, Sanfacon H, Wellink J, Wetzel T, Yoshikawa N (2005) Family Comoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. Eighth report of the international committee on taxonomy of viruses. Elsevier Academic Press, Amsterdam, pp 807–818Google Scholar
  6. 6.
    Diener TO, Schneider IR (1968) Virus degradation and nucleic acid release in single-phase phenol systems. Arch. Biochem Biophys 124:401–412PubMedCrossRefGoogle Scholar
  7. 7.
    Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25:263–269PubMedCrossRefGoogle Scholar
  8. 8.
    Rott ME, Jelkmann W (2001) Characterization and detection of several filamentous viruses of cherry: adaptation of an alternative cloning method (DOP-PCR), and modification of an RNA extraction protocol. Eur J Plant Pathol 107:411–420CrossRefGoogle Scholar
  9. 9.
    Marck C (1988) DNA Strider: a “C” programme for the fast analysis of DNA and protein sequences on the Apple Macintosh family computers. Nucl Acids Res 16:1829–1836PubMedCrossRefGoogle Scholar
  10. 10.
    Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448PubMedCrossRefGoogle Scholar
  11. 11.
    Altschul SF, Stephen F, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  12. 12.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31:3406–3415PubMedCrossRefGoogle Scholar
  13. 13.
    Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369PubMedCrossRefGoogle Scholar
  14. 14.
    Emanuelsson O, Nielsen H, Brunak S, Von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016PubMedCrossRefGoogle Scholar
  15. 15.
    Emanuelsson O, Brunak S, Von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971PubMedCrossRefGoogle Scholar
  16. 16.
    Kozak M (1986) Point mutations define a sequence flanking the AUG initiation codon that modulates translation by eucaryotic ribosomes. Cell 44:283–292PubMedCrossRefGoogle Scholar
  17. 17.
    Lützke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6:43–48Google Scholar
  18. 18.
    Rott ME, Gilchrist A, Lee L, Rochon DM (1995) Nucleotide sequence of the tomato ringspot virus RNA1. J Gen Virol 76:465–473PubMedCrossRefGoogle Scholar
  19. 19.
    Rott ME, Tremaine JH, Rochon DM (1991) Comparison of the 5’ and 3’ termini of tomato ringspot virus RNA 1 and RNA 2: evidence for RNA recombination. Virology 185:468–472PubMedCrossRefGoogle Scholar
  20. 20.
    Blom N, Hansen J, Blaas D, Brunak S (1996) Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci (5):2203–2216Google Scholar
  21. 21.
    Wang A, Sanfacon H (2000) Proteolytic processing at a novel cleavage site in the N-terminal region of the tomato ringspot nepovirus RNA-1-encoded polyprotein in vitro. J Gen Virol 81:2771–2781PubMedGoogle Scholar
  22. 22.
    Zhang SC, Zhang G, Yang L, Chisholm J, Sanfaçon H (2005) Evidence that insertion of Tomato ringspot nepovirus NTB-VPg protein in endoplasmic reticulum membranes is directed by two domains: a C-terminal transmembrane helix and an N-terminal amphipathic helix. J Virol 79:11752–11765PubMedCrossRefGoogle Scholar
  23. 23.
    Latvala S, Susi P, Kalkkinen N, Lehto K (1998) Characterization of the coat protein gene of mite-transmitted blackcurrant reversion associated nepovirus. Virus Res 53:1–11PubMedCrossRefGoogle Scholar
  24. 24.
    Hans F, Sanfaçon H (1995) Tomato ringspot nepovirus protease: characterization and cleavage site specificity. J Gen Virol 76:917–927PubMedCrossRefGoogle Scholar
  25. 25.
    Carrier K, Xiang Y, Sanfaçon H (2001) Genomic organization of RNA2 of Tomato ringspot virus: processing at a third cleavage site in the N-terminal region of the polyprotein in vitro. J Gen Virol 82:1785–1790PubMedGoogle Scholar
  26. 26.
    Brault V, Hibrand L, Candresse T, Le Gall O, Dunez J (1989) Nucleotide sequence and genetic organization of Hungarian grapevine chrome mosaic nepovirus RNA2. Nucl Acids Res 17:7809–7819PubMedCrossRefGoogle Scholar
  27. 27.
    Smith IM, McNamara DG, Scott PR, Holderness M (1997) Quarantine pests for Europe. Data sheets on quarantine pests for the European Union and for the European and Mediterranean Plant Protection Organization, 2nd edn, pp 1207–1210Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Toufic Elbeaino
    • 1
  • Michele Digiaro
    • 1
  • Frida Fallanaj
    • 1
  • Slobodan Kuzmanovic
    • 2
  • Giovanni Paolo Martelli
    • 3
  1. 1.Istituto Agronomico Mediterraneo di BariValenzanoItaly
  2. 2.Institute for Plant Protection and EnvironmentBelgradeSerbia
  3. 3.Dipartimento di Protezione delle Piante e Microbiologia ApplicataUniversità degli StudiBariItaly

Personalised recommendations